Bayesian Dynamic Borrowing of Historical Information with Applications to the Analysis of Large-Scale Assessments

The purpose of this paper is to demonstrate and evaluate the use of Bayesian dynamic borrowing (Viele et al, in Pharm Stat 13:41-54, 2014) as a means of systematically utilizing historical information with specific applications to large-scale educational assessments. Dynamic borrowing via Bayesian h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychometrika 2023-03, Vol.88 (1), p.1-30
Hauptverfasser: Kaplan, David, Chen, Jianshen, Yavuz, Sinan, Lyu, Weicong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 1
container_start_page 1
container_title Psychometrika
container_volume 88
creator Kaplan, David
Chen, Jianshen
Yavuz, Sinan
Lyu, Weicong
description The purpose of this paper is to demonstrate and evaluate the use of Bayesian dynamic borrowing (Viele et al, in Pharm Stat 13:41-54, 2014) as a means of systematically utilizing historical information with specific applications to large-scale educational assessments. Dynamic borrowing via Bayesian hierarchical models is a special case of a general framework of historical borrowing where the degree of borrowing depends on the heterogeneity among historical data and current data. A joint prior distribution over the historical and current data sets is specified with the degree of heterogeneity across the data sets controlled by the variance of the joint distribution. We apply Bayesian dynamic borrowing to both single-level and multilevel models and compare this approach to other historical borrowing methods such as complete pooling, Bayesian synthesis, and power priors. Two case studies using data from the Program for International Student Assessment reveal the utility of Bayesian dynamic borrowing in terms of predictive accuracy. This is followed by two simulation studies that reveal the utility of Bayesian dynamic borrowing over simple pooling and power priors in cases where the historical data is heterogeneous compared to the current data based on bias, mean squared error, and predictive accuracy. In cases of homogeneous historical data, Bayesian dynamic borrowing performs similarly to data pooling, Bayesian synthesis, and power priors. In contrast, for heterogeneous historical data, Bayesian dynamic borrowing performed at least as well, if not better, than other methods of borrowing with respect to mean squared error, percent bias, and leave-one-out cross-validation.
doi_str_mv 10.1007/s11336-022-09869-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9185721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781027566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-eea62d7d856bb5d5b86a465111e725a498c8f35ff3e7ecfdc32630665aacda4e3</originalsourceid><addsrcrecordid>eNp9kUtv1DAQxyMEotvCF-CALLj0EvAjdpwL0rY8WmklDsDZ8jqTXVeJvfV4qfbb47ClPA6cLM_85j-Pf1W9YPQNo7R9i4wJoWrKeU07rbpaPKoWTCs6f-njakGpELVgXJxUp4g3lNKOaf20OhFS6ZZzvqhuL-wB0NtA3h-CnbwjFzGleOfDhsSBXHnMMXlnR3Idhpgmm30M5M7nLVnudmPJzAEkOZK8BbIMdjygx7l2ZdMG6i-ltsQRAXGCkPFZ9WSwI8Lz-_es-vbxw9fLq3r1-dP15XJVO0lZrgGs4n3ba6nWa9nLtVa2UZIxBi2Xtum004OQwyCgBTf0TnAlqFLSWtfbBsRZ9e6ou9uvJ-hd6Z3saHbJTzYdTLTe_J0Jfms28bspN5ItZ0Xg1VEgYvYGnc_gti6GAC4b3vBGdKJA5_ddUrzdA2YzeXQwjjZA3KPhqpWKNh3VBX39D3oT96kcrFCtZpQXUhWKHymXImKC4WFiRs1suznabort5qftZp7i5Z-7PpT88rkA4ghgSYUNpN-9_yP7Axsmulk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781027566</pqid></control><display><type>article</type><title>Bayesian Dynamic Borrowing of Historical Information with Applications to the Analysis of Large-Scale Assessments</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>EBSCOhost Education Source</source><creator>Kaplan, David ; Chen, Jianshen ; Yavuz, Sinan ; Lyu, Weicong</creator><creatorcontrib>Kaplan, David ; Chen, Jianshen ; Yavuz, Sinan ; Lyu, Weicong ; Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><description>The purpose of this paper is to demonstrate and evaluate the use of Bayesian dynamic borrowing (Viele et al, in Pharm Stat 13:41-54, 2014) as a means of systematically utilizing historical information with specific applications to large-scale educational assessments. Dynamic borrowing via Bayesian hierarchical models is a special case of a general framework of historical borrowing where the degree of borrowing depends on the heterogeneity among historical data and current data. A joint prior distribution over the historical and current data sets is specified with the degree of heterogeneity across the data sets controlled by the variance of the joint distribution. We apply Bayesian dynamic borrowing to both single-level and multilevel models and compare this approach to other historical borrowing methods such as complete pooling, Bayesian synthesis, and power priors. Two case studies using data from the Program for International Student Assessment reveal the utility of Bayesian dynamic borrowing in terms of predictive accuracy. This is followed by two simulation studies that reveal the utility of Bayesian dynamic borrowing over simple pooling and power priors in cases where the historical data is heterogeneous compared to the current data based on bias, mean squared error, and predictive accuracy. In cases of homogeneous historical data, Bayesian dynamic borrowing performs similarly to data pooling, Bayesian synthesis, and power priors. In contrast, for heterogeneous historical data, Bayesian dynamic borrowing performed at least as well, if not better, than other methods of borrowing with respect to mean squared error, percent bias, and leave-one-out cross-validation.</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/s11336-022-09869-3</identifier><identifier>PMID: 35687222</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Application Reviews and Case Studies ; Application Reviews and Case Studies (ARCS) ; Assessment ; Bayes Theorem ; Bayesian analysis ; Behavioral Science and Psychology ; Case Studies ; Computer Simulation ; Datasets ; Educational Assessment ; Foreign students ; Humanities ; Humans ; Information processing ; Law ; Mathematical Methods In Social Sciences ; Mathematical models ; Mathematics ; Models, Statistical ; Psychology ; Psychometrics ; Random variables ; Research Design ; Statistical Theory and Methods ; Statistics for Social Sciences ; Student Evaluation ; Testing and Evaluation</subject><ispartof>Psychometrika, 2023-03, Vol.88 (1), p.1-30</ispartof><rights>The Author(s) under exclusive licence to The Psychometric Society 2022</rights><rights>2022. The Author(s) under exclusive licence to The Psychometric Society.</rights><rights>The Author(s) under exclusive licence to The Psychometric Society 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-eea62d7d856bb5d5b86a465111e725a498c8f35ff3e7ecfdc32630665aacda4e3</citedby><cites>FETCH-LOGICAL-c501t-eea62d7d856bb5d5b86a465111e725a498c8f35ff3e7ecfdc32630665aacda4e3</cites><orcidid>0000-0003-0294-549X ; 0000-0003-3131-7820 ; 0000-0002-3923-9153 ; 0000-0002-8159-2161 ; 0000000331317820 ; 0000000239239153 ; 0000000281592161 ; 000000030294549X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11336-022-09869-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11336-022-09869-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35687222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2424393$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaplan, David</creatorcontrib><creatorcontrib>Chen, Jianshen</creatorcontrib><creatorcontrib>Yavuz, Sinan</creatorcontrib><creatorcontrib>Lyu, Weicong</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><title>Bayesian Dynamic Borrowing of Historical Information with Applications to the Analysis of Large-Scale Assessments</title><title>Psychometrika</title><addtitle>Psychometrika</addtitle><addtitle>Psychometrika</addtitle><description>The purpose of this paper is to demonstrate and evaluate the use of Bayesian dynamic borrowing (Viele et al, in Pharm Stat 13:41-54, 2014) as a means of systematically utilizing historical information with specific applications to large-scale educational assessments. Dynamic borrowing via Bayesian hierarchical models is a special case of a general framework of historical borrowing where the degree of borrowing depends on the heterogeneity among historical data and current data. A joint prior distribution over the historical and current data sets is specified with the degree of heterogeneity across the data sets controlled by the variance of the joint distribution. We apply Bayesian dynamic borrowing to both single-level and multilevel models and compare this approach to other historical borrowing methods such as complete pooling, Bayesian synthesis, and power priors. Two case studies using data from the Program for International Student Assessment reveal the utility of Bayesian dynamic borrowing in terms of predictive accuracy. This is followed by two simulation studies that reveal the utility of Bayesian dynamic borrowing over simple pooling and power priors in cases where the historical data is heterogeneous compared to the current data based on bias, mean squared error, and predictive accuracy. In cases of homogeneous historical data, Bayesian dynamic borrowing performs similarly to data pooling, Bayesian synthesis, and power priors. In contrast, for heterogeneous historical data, Bayesian dynamic borrowing performed at least as well, if not better, than other methods of borrowing with respect to mean squared error, percent bias, and leave-one-out cross-validation.</description><subject>Application Reviews and Case Studies</subject><subject>Application Reviews and Case Studies (ARCS)</subject><subject>Assessment</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Behavioral Science and Psychology</subject><subject>Case Studies</subject><subject>Computer Simulation</subject><subject>Datasets</subject><subject>Educational Assessment</subject><subject>Foreign students</subject><subject>Humanities</subject><subject>Humans</subject><subject>Information processing</subject><subject>Law</subject><subject>Mathematical Methods In Social Sciences</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Models, Statistical</subject><subject>Psychology</subject><subject>Psychometrics</subject><subject>Random variables</subject><subject>Research Design</subject><subject>Statistical Theory and Methods</subject><subject>Statistics for Social Sciences</subject><subject>Student Evaluation</subject><subject>Testing and Evaluation</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtv1DAQxyMEotvCF-CALLj0EvAjdpwL0rY8WmklDsDZ8jqTXVeJvfV4qfbb47ClPA6cLM_85j-Pf1W9YPQNo7R9i4wJoWrKeU07rbpaPKoWTCs6f-njakGpELVgXJxUp4g3lNKOaf20OhFS6ZZzvqhuL-wB0NtA3h-CnbwjFzGleOfDhsSBXHnMMXlnR3Idhpgmm30M5M7nLVnudmPJzAEkOZK8BbIMdjygx7l2ZdMG6i-ltsQRAXGCkPFZ9WSwI8Lz-_es-vbxw9fLq3r1-dP15XJVO0lZrgGs4n3ba6nWa9nLtVa2UZIxBi2Xtum004OQwyCgBTf0TnAlqFLSWtfbBsRZ9e6ou9uvJ-hd6Z3saHbJTzYdTLTe_J0Jfms28bspN5ItZ0Xg1VEgYvYGnc_gti6GAC4b3vBGdKJA5_ddUrzdA2YzeXQwjjZA3KPhqpWKNh3VBX39D3oT96kcrFCtZpQXUhWKHymXImKC4WFiRs1suznabort5qftZp7i5Z-7PpT88rkA4ghgSYUNpN-9_yP7Axsmulk</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Kaplan, David</creator><creator>Chen, Jianshen</creator><creator>Yavuz, Sinan</creator><creator>Lyu, Weicong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7TK</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88B</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0P</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0294-549X</orcidid><orcidid>https://orcid.org/0000-0003-3131-7820</orcidid><orcidid>https://orcid.org/0000-0002-3923-9153</orcidid><orcidid>https://orcid.org/0000-0002-8159-2161</orcidid><orcidid>https://orcid.org/0000000331317820</orcidid><orcidid>https://orcid.org/0000000239239153</orcidid><orcidid>https://orcid.org/0000000281592161</orcidid><orcidid>https://orcid.org/000000030294549X</orcidid></search><sort><creationdate>20230301</creationdate><title>Bayesian Dynamic Borrowing of Historical Information with Applications to the Analysis of Large-Scale Assessments</title><author>Kaplan, David ; Chen, Jianshen ; Yavuz, Sinan ; Lyu, Weicong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-eea62d7d856bb5d5b86a465111e725a498c8f35ff3e7ecfdc32630665aacda4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Application Reviews and Case Studies</topic><topic>Application Reviews and Case Studies (ARCS)</topic><topic>Assessment</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Behavioral Science and Psychology</topic><topic>Case Studies</topic><topic>Computer Simulation</topic><topic>Datasets</topic><topic>Educational Assessment</topic><topic>Foreign students</topic><topic>Humanities</topic><topic>Humans</topic><topic>Information processing</topic><topic>Law</topic><topic>Mathematical Methods In Social Sciences</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Models, Statistical</topic><topic>Psychology</topic><topic>Psychometrics</topic><topic>Random variables</topic><topic>Research Design</topic><topic>Statistical Theory and Methods</topic><topic>Statistics for Social Sciences</topic><topic>Student Evaluation</topic><topic>Testing and Evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaplan, David</creatorcontrib><creatorcontrib>Chen, Jianshen</creatorcontrib><creatorcontrib>Yavuz, Sinan</creatorcontrib><creatorcontrib>Lyu, Weicong</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Education Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaplan, David</au><au>Chen, Jianshen</au><au>Yavuz, Sinan</au><au>Lyu, Weicong</au><aucorp>Univ. of Wisconsin, Madison, WI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Dynamic Borrowing of Historical Information with Applications to the Analysis of Large-Scale Assessments</atitle><jtitle>Psychometrika</jtitle><stitle>Psychometrika</stitle><addtitle>Psychometrika</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>88</volume><issue>1</issue><spage>1</spage><epage>30</epage><pages>1-30</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><abstract>The purpose of this paper is to demonstrate and evaluate the use of Bayesian dynamic borrowing (Viele et al, in Pharm Stat 13:41-54, 2014) as a means of systematically utilizing historical information with specific applications to large-scale educational assessments. Dynamic borrowing via Bayesian hierarchical models is a special case of a general framework of historical borrowing where the degree of borrowing depends on the heterogeneity among historical data and current data. A joint prior distribution over the historical and current data sets is specified with the degree of heterogeneity across the data sets controlled by the variance of the joint distribution. We apply Bayesian dynamic borrowing to both single-level and multilevel models and compare this approach to other historical borrowing methods such as complete pooling, Bayesian synthesis, and power priors. Two case studies using data from the Program for International Student Assessment reveal the utility of Bayesian dynamic borrowing in terms of predictive accuracy. This is followed by two simulation studies that reveal the utility of Bayesian dynamic borrowing over simple pooling and power priors in cases where the historical data is heterogeneous compared to the current data based on bias, mean squared error, and predictive accuracy. In cases of homogeneous historical data, Bayesian dynamic borrowing performs similarly to data pooling, Bayesian synthesis, and power priors. In contrast, for heterogeneous historical data, Bayesian dynamic borrowing performed at least as well, if not better, than other methods of borrowing with respect to mean squared error, percent bias, and leave-one-out cross-validation.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35687222</pmid><doi>10.1007/s11336-022-09869-3</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-0294-549X</orcidid><orcidid>https://orcid.org/0000-0003-3131-7820</orcidid><orcidid>https://orcid.org/0000-0002-3923-9153</orcidid><orcidid>https://orcid.org/0000-0002-8159-2161</orcidid><orcidid>https://orcid.org/0000000331317820</orcidid><orcidid>https://orcid.org/0000000239239153</orcidid><orcidid>https://orcid.org/0000000281592161</orcidid><orcidid>https://orcid.org/000000030294549X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-3123
ispartof Psychometrika, 2023-03, Vol.88 (1), p.1-30
issn 0033-3123
1860-0980
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9185721
source MEDLINE; SpringerNature Journals; EBSCOhost Education Source
subjects Application Reviews and Case Studies
Application Reviews and Case Studies (ARCS)
Assessment
Bayes Theorem
Bayesian analysis
Behavioral Science and Psychology
Case Studies
Computer Simulation
Datasets
Educational Assessment
Foreign students
Humanities
Humans
Information processing
Law
Mathematical Methods In Social Sciences
Mathematical models
Mathematics
Models, Statistical
Psychology
Psychometrics
Random variables
Research Design
Statistical Theory and Methods
Statistics for Social Sciences
Student Evaluation
Testing and Evaluation
title Bayesian Dynamic Borrowing of Historical Information with Applications to the Analysis of Large-Scale Assessments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T14%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Dynamic%20Borrowing%20of%20Historical%20Information%20with%20Applications%20to%20the%20Analysis%20of%20Large-Scale%20Assessments&rft.jtitle=Psychometrika&rft.au=Kaplan,%20David&rft.aucorp=Univ.%20of%20Wisconsin,%20Madison,%20WI%20(United%20States)&rft.date=2023-03-01&rft.volume=88&rft.issue=1&rft.spage=1&rft.epage=30&rft.pages=1-30&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/s11336-022-09869-3&rft_dat=%3Cproquest_pubme%3E2781027566%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781027566&rft_id=info:pmid/35687222&rfr_iscdi=true