Strongly Correlated Quantum Spin Liquids versus Heavy Fermion Metals: A Review

This review considers the topological fermion condensation quantum phase transition (FCQPT) that explains the complex behavior of strongly correlated Fermi systems, such as frustrated insulators with quantum spin liquid and heavy fermion metals. The review contrasts theoretical consideration with re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-05, Vol.15 (11), p.3901
Hauptverfasser: Shaginyan, Vasily R, Msezane, Alfred Z, Japaridze, George S, Artamonov, Stanislav A, Leevik, Yulya S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 3901
container_title Materials
container_volume 15
creator Shaginyan, Vasily R
Msezane, Alfred Z
Japaridze, George S
Artamonov, Stanislav A
Leevik, Yulya S
description This review considers the topological fermion condensation quantum phase transition (FCQPT) that explains the complex behavior of strongly correlated Fermi systems, such as frustrated insulators with quantum spin liquid and heavy fermion metals. The review contrasts theoretical consideration with recent experimental data collected on both heavy fermion metals (HF) and frustrated insulators. Such a method allows to understand experimental data. We also consider experimental data collected on quantum spin liquid in Lu3Cu2Sb3O14 and quasi-one dimensional (1D) quantum spin liquid in both YbAlO3 and Cu(C4H4N2)(NO3)2 with the aim to establish a sound theoretical explanation for the observed scaling laws, Landau Fermi liquid (LFL) and non-Fermi-liquid (NFL) behavior exhibited by these frustrated insulators. The recent experimental data on the heavy-fermion metal α-YbAl1-xFexB4, with x=0.014, and on its sister compounds β-YbAlB4 and YbCo2Ge4, carried out under the application of magnetic field as a control parameter are analyzed. We show that the thermodynamic and transport properties as well as the empirical scaling laws follow from the fermion condensation theory. We explain how both the similarity and the difference in the thermodynamic and transport properties of α-YbAl1-xFexB4 and in its sister compounds β-YbAlB4 and YbCo2Ge4 emerge, as well as establish connection of these (HF) metals with insulators Lu3Cu2Sb3O14, Cu(C4H4N2)(NO3)2 and YbAlO3. We demonstrate that the universal LFL and NFL behavior emerge because the HF compounds and the frustrated insulators are located near the topological FCQPT or are driven by the application of magnetic fields.
doi_str_mv 10.3390/ma15113901
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9182384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674384806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3481-e5877d60d7e610c898d40ed4d946fdf496e827d35acba1f4e8d992a7ef238f333</originalsourceid><addsrcrecordid>eNpdkVFPHCEUhYlpo8b64g8wpH1pmmyFgWGgDyZmU2uTrU1rfSYIdxQzAysw2-y_L5tVa8sLN5cv51zuQeiIko-MKXIyGtpSWiu6g_apUmJGFeevXtR76DDne1IPY1Q2ahftsVZIVoF9dHlVUgy3wxrPY0owmAIO_5hMKNOIr5Y-4IV_mLzLeAUpTxlfgFmt8Tmk0ceAv0ExQ_6Ez_BPWHn4_Qa97msDDh_vA3R9_vnX_GK2-P7l6_xsMbOMSzqDVnadE8R1ICixUknHCTjuFBe967kSIJvOsdbYG0N7DtIp1ZgO-obJnjF2gE63usvpZgRnIZRkBr1MfjRpraPx-t-X4O_0bVxpVTfAJK8Cb7cCMRevs_UF7J2NIYAtmirCJNlA7x9dUnyYIBc9-mxhGEyAOGXdiK4VtCWqqei7_9D7OKVQd7CheLWURFTqw5ayKeacoH-emBK9iVP_jbPCxy__-Iw-hcf-ANbjmaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674384806</pqid></control><display><type>article</type><title>Strongly Correlated Quantum Spin Liquids versus Heavy Fermion Metals: A Review</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Shaginyan, Vasily R ; Msezane, Alfred Z ; Japaridze, George S ; Artamonov, Stanislav A ; Leevik, Yulya S</creator><creatorcontrib>Shaginyan, Vasily R ; Msezane, Alfred Z ; Japaridze, George S ; Artamonov, Stanislav A ; Leevik, Yulya S ; Clark Atlanta Univ., Atlanta, GA (United States)</creatorcontrib><description>This review considers the topological fermion condensation quantum phase transition (FCQPT) that explains the complex behavior of strongly correlated Fermi systems, such as frustrated insulators with quantum spin liquid and heavy fermion metals. The review contrasts theoretical consideration with recent experimental data collected on both heavy fermion metals (HF) and frustrated insulators. Such a method allows to understand experimental data. We also consider experimental data collected on quantum spin liquid in Lu3Cu2Sb3O14 and quasi-one dimensional (1D) quantum spin liquid in both YbAlO3 and Cu(C4H4N2)(NO3)2 with the aim to establish a sound theoretical explanation for the observed scaling laws, Landau Fermi liquid (LFL) and non-Fermi-liquid (NFL) behavior exhibited by these frustrated insulators. The recent experimental data on the heavy-fermion metal α-YbAl1-xFexB4, with x=0.014, and on its sister compounds β-YbAlB4 and YbCo2Ge4, carried out under the application of magnetic field as a control parameter are analyzed. We show that the thermodynamic and transport properties as well as the empirical scaling laws follow from the fermion condensation theory. We explain how both the similarity and the difference in the thermodynamic and transport properties of α-YbAl1-xFexB4 and in its sister compounds β-YbAlB4 and YbCo2Ge4 emerge, as well as establish connection of these (HF) metals with insulators Lu3Cu2Sb3O14, Cu(C4H4N2)(NO3)2 and YbAlO3. We demonstrate that the universal LFL and NFL behavior emerge because the HF compounds and the frustrated insulators are located near the topological FCQPT or are driven by the application of magnetic fields.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15113901</identifier><identifier>PMID: 35683199</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Copper ; Empirical analysis ; Fermi liquids ; fermion condensation ; Fermions ; flat band ; frustrated compound ; Heat ; heavy fermion compound ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Insulators ; Magnetic fields ; MATERIALS SCIENCE ; Metals ; Phase transitions ; quantum spin liquid ; Review ; Scaling laws ; Spin liquid ; Thermodynamics ; topological quantum phase transition ; Topology ; Transport properties</subject><ispartof>Materials, 2022-05, Vol.15 (11), p.3901</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3481-e5877d60d7e610c898d40ed4d946fdf496e827d35acba1f4e8d992a7ef238f333</citedby><cites>FETCH-LOGICAL-c3481-e5877d60d7e610c898d40ed4d946fdf496e827d35acba1f4e8d992a7ef238f333</cites><orcidid>0000-0002-1248-5661 ; 0000-0001-8945-2211 ; 0000000212485661 ; 0000000189452211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182384/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182384/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35683199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1903804$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaginyan, Vasily R</creatorcontrib><creatorcontrib>Msezane, Alfred Z</creatorcontrib><creatorcontrib>Japaridze, George S</creatorcontrib><creatorcontrib>Artamonov, Stanislav A</creatorcontrib><creatorcontrib>Leevik, Yulya S</creatorcontrib><creatorcontrib>Clark Atlanta Univ., Atlanta, GA (United States)</creatorcontrib><title>Strongly Correlated Quantum Spin Liquids versus Heavy Fermion Metals: A Review</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This review considers the topological fermion condensation quantum phase transition (FCQPT) that explains the complex behavior of strongly correlated Fermi systems, such as frustrated insulators with quantum spin liquid and heavy fermion metals. The review contrasts theoretical consideration with recent experimental data collected on both heavy fermion metals (HF) and frustrated insulators. Such a method allows to understand experimental data. We also consider experimental data collected on quantum spin liquid in Lu3Cu2Sb3O14 and quasi-one dimensional (1D) quantum spin liquid in both YbAlO3 and Cu(C4H4N2)(NO3)2 with the aim to establish a sound theoretical explanation for the observed scaling laws, Landau Fermi liquid (LFL) and non-Fermi-liquid (NFL) behavior exhibited by these frustrated insulators. The recent experimental data on the heavy-fermion metal α-YbAl1-xFexB4, with x=0.014, and on its sister compounds β-YbAlB4 and YbCo2Ge4, carried out under the application of magnetic field as a control parameter are analyzed. We show that the thermodynamic and transport properties as well as the empirical scaling laws follow from the fermion condensation theory. We explain how both the similarity and the difference in the thermodynamic and transport properties of α-YbAl1-xFexB4 and in its sister compounds β-YbAlB4 and YbCo2Ge4 emerge, as well as establish connection of these (HF) metals with insulators Lu3Cu2Sb3O14, Cu(C4H4N2)(NO3)2 and YbAlO3. We demonstrate that the universal LFL and NFL behavior emerge because the HF compounds and the frustrated insulators are located near the topological FCQPT or are driven by the application of magnetic fields.</description><subject>Copper</subject><subject>Empirical analysis</subject><subject>Fermi liquids</subject><subject>fermion condensation</subject><subject>Fermions</subject><subject>flat band</subject><subject>frustrated compound</subject><subject>Heat</subject><subject>heavy fermion compound</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Insulators</subject><subject>Magnetic fields</subject><subject>MATERIALS SCIENCE</subject><subject>Metals</subject><subject>Phase transitions</subject><subject>quantum spin liquid</subject><subject>Review</subject><subject>Scaling laws</subject><subject>Spin liquid</subject><subject>Thermodynamics</subject><subject>topological quantum phase transition</subject><subject>Topology</subject><subject>Transport properties</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVFPHCEUhYlpo8b64g8wpH1pmmyFgWGgDyZmU2uTrU1rfSYIdxQzAysw2-y_L5tVa8sLN5cv51zuQeiIko-MKXIyGtpSWiu6g_apUmJGFeevXtR76DDne1IPY1Q2ahftsVZIVoF9dHlVUgy3wxrPY0owmAIO_5hMKNOIr5Y-4IV_mLzLeAUpTxlfgFmt8Tmk0ceAv0ExQ_6Ez_BPWHn4_Qa97msDDh_vA3R9_vnX_GK2-P7l6_xsMbOMSzqDVnadE8R1ICixUknHCTjuFBe967kSIJvOsdbYG0N7DtIp1ZgO-obJnjF2gE63usvpZgRnIZRkBr1MfjRpraPx-t-X4O_0bVxpVTfAJK8Cb7cCMRevs_UF7J2NIYAtmirCJNlA7x9dUnyYIBc9-mxhGEyAOGXdiK4VtCWqqei7_9D7OKVQd7CheLWURFTqw5ayKeacoH-emBK9iVP_jbPCxy__-Iw-hcf-ANbjmaA</recordid><startdate>20220530</startdate><enddate>20220530</enddate><creator>Shaginyan, Vasily R</creator><creator>Msezane, Alfred Z</creator><creator>Japaridze, George S</creator><creator>Artamonov, Stanislav A</creator><creator>Leevik, Yulya S</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1248-5661</orcidid><orcidid>https://orcid.org/0000-0001-8945-2211</orcidid><orcidid>https://orcid.org/0000000212485661</orcidid><orcidid>https://orcid.org/0000000189452211</orcidid></search><sort><creationdate>20220530</creationdate><title>Strongly Correlated Quantum Spin Liquids versus Heavy Fermion Metals: A Review</title><author>Shaginyan, Vasily R ; Msezane, Alfred Z ; Japaridze, George S ; Artamonov, Stanislav A ; Leevik, Yulya S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3481-e5877d60d7e610c898d40ed4d946fdf496e827d35acba1f4e8d992a7ef238f333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Copper</topic><topic>Empirical analysis</topic><topic>Fermi liquids</topic><topic>fermion condensation</topic><topic>Fermions</topic><topic>flat band</topic><topic>frustrated compound</topic><topic>Heat</topic><topic>heavy fermion compound</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Insulators</topic><topic>Magnetic fields</topic><topic>MATERIALS SCIENCE</topic><topic>Metals</topic><topic>Phase transitions</topic><topic>quantum spin liquid</topic><topic>Review</topic><topic>Scaling laws</topic><topic>Spin liquid</topic><topic>Thermodynamics</topic><topic>topological quantum phase transition</topic><topic>Topology</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaginyan, Vasily R</creatorcontrib><creatorcontrib>Msezane, Alfred Z</creatorcontrib><creatorcontrib>Japaridze, George S</creatorcontrib><creatorcontrib>Artamonov, Stanislav A</creatorcontrib><creatorcontrib>Leevik, Yulya S</creatorcontrib><creatorcontrib>Clark Atlanta Univ., Atlanta, GA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaginyan, Vasily R</au><au>Msezane, Alfred Z</au><au>Japaridze, George S</au><au>Artamonov, Stanislav A</au><au>Leevik, Yulya S</au><aucorp>Clark Atlanta Univ., Atlanta, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strongly Correlated Quantum Spin Liquids versus Heavy Fermion Metals: A Review</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-05-30</date><risdate>2022</risdate><volume>15</volume><issue>11</issue><spage>3901</spage><pages>3901-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This review considers the topological fermion condensation quantum phase transition (FCQPT) that explains the complex behavior of strongly correlated Fermi systems, such as frustrated insulators with quantum spin liquid and heavy fermion metals. The review contrasts theoretical consideration with recent experimental data collected on both heavy fermion metals (HF) and frustrated insulators. Such a method allows to understand experimental data. We also consider experimental data collected on quantum spin liquid in Lu3Cu2Sb3O14 and quasi-one dimensional (1D) quantum spin liquid in both YbAlO3 and Cu(C4H4N2)(NO3)2 with the aim to establish a sound theoretical explanation for the observed scaling laws, Landau Fermi liquid (LFL) and non-Fermi-liquid (NFL) behavior exhibited by these frustrated insulators. The recent experimental data on the heavy-fermion metal α-YbAl1-xFexB4, with x=0.014, and on its sister compounds β-YbAlB4 and YbCo2Ge4, carried out under the application of magnetic field as a control parameter are analyzed. We show that the thermodynamic and transport properties as well as the empirical scaling laws follow from the fermion condensation theory. We explain how both the similarity and the difference in the thermodynamic and transport properties of α-YbAl1-xFexB4 and in its sister compounds β-YbAlB4 and YbCo2Ge4 emerge, as well as establish connection of these (HF) metals with insulators Lu3Cu2Sb3O14, Cu(C4H4N2)(NO3)2 and YbAlO3. We demonstrate that the universal LFL and NFL behavior emerge because the HF compounds and the frustrated insulators are located near the topological FCQPT or are driven by the application of magnetic fields.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35683199</pmid><doi>10.3390/ma15113901</doi><orcidid>https://orcid.org/0000-0002-1248-5661</orcidid><orcidid>https://orcid.org/0000-0001-8945-2211</orcidid><orcidid>https://orcid.org/0000000212485661</orcidid><orcidid>https://orcid.org/0000000189452211</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-05, Vol.15 (11), p.3901
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9182384
source MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library; PubMed Central Open Access
subjects Copper
Empirical analysis
Fermi liquids
fermion condensation
Fermions
flat band
frustrated compound
Heat
heavy fermion compound
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Insulators
Magnetic fields
MATERIALS SCIENCE
Metals
Phase transitions
quantum spin liquid
Review
Scaling laws
Spin liquid
Thermodynamics
topological quantum phase transition
Topology
Transport properties
title Strongly Correlated Quantum Spin Liquids versus Heavy Fermion Metals: A Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strongly%20Correlated%20Quantum%20Spin%20Liquids%20versus%20Heavy%20Fermion%20Metals:%20A%20Review&rft.jtitle=Materials&rft.au=Shaginyan,%20Vasily%20R&rft.aucorp=Clark%20Atlanta%20Univ.,%20Atlanta,%20GA%20(United%20States)&rft.date=2022-05-30&rft.volume=15&rft.issue=11&rft.spage=3901&rft.pages=3901-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15113901&rft_dat=%3Cproquest_pubme%3E2674384806%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674384806&rft_id=info:pmid/35683199&rfr_iscdi=true