Acoustic Metamaterials for Low-Frequency Noise Reduction Based on Parallel Connection of Multiple Spiral Chambers

Acoustic metamaterials based on Helmholtz resonance have perfect sound absorption characteristics with the subwavelength size, but the absorption bandwidth is narrow, which limits the practical applications for noise control with broadband. On the basis of the Fabry-Perot resonance principle, a nove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-05, Vol.15 (11), p.3882
Hauptverfasser: Duan, Haiqin, Yang, Fei, Shen, Xinmin, Yin, Qin, Wang, Enshuai, Zhang, Xiaonan, Yang, Xiaocui, Shen, Cheng, Peng, Wenqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 3882
container_title Materials
container_volume 15
creator Duan, Haiqin
Yang, Fei
Shen, Xinmin
Yin, Qin
Wang, Enshuai
Zhang, Xiaonan
Yang, Xiaocui
Shen, Cheng
Peng, Wenqiang
description Acoustic metamaterials based on Helmholtz resonance have perfect sound absorption characteristics with the subwavelength size, but the absorption bandwidth is narrow, which limits the practical applications for noise control with broadband. On the basis of the Fabry-Perot resonance principle, a novel sound absorber of the acoustic metamaterial by parallel connection of the multiple spiral chambers (abbreviated as MSC-AM) is proposed and investigated in this research. Through the theoretical modeling, finite element simulation, sample preparation and experimental validation, the effectiveness and practicability of the MSC-AM are verified. Actual sound absorption coefficients of the MSC-AM in the frequency range of 360-680 Hz (with the bandwidth Δ = 320 Hz) are larger than 0.8, which exhibit the extraordinarily low-frequency sound absorption performance. Moreover, actual sound absorption coefficients are above 0.5 in the 350-1600 Hz range (with a bandwidth Δ = 1250 Hz), which achieve broadband sound absorption in the low-middle frequency range. According to various actual demands, the structural parameters can be adjusted flexibly to realize the customization of sound absorption bandwidth, which provides a novel way to design and improve acoustic metamaterials to reduce the noise with various frequency bands and has promising prospects of application in low-frequency sound absorption.
doi_str_mv 10.3390/ma15113882
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9181907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674382123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-65689d59ca6831e81890d8a0602a84b783c6d7703e2e6a94392de1c6c34b96d23</originalsourceid><addsrcrecordid>eNpdkUtLxDAUhYMoKurGHyABNyJU82jTZCPo4KgwPvCxDpn0jkbaZiZpFf-9GWZ8ZpMD9-Pk5B6Edik54lyR48bQglIuJVtBm1QpkVGV56u_9AbaifGVpMM5lUytow1eCJk02USzU-v72DmLr6EzjekgOFNHPPEBj_x7Ngww66G1H_jGuwj4Hqreds63-MxEqHASdyaYuoYaD3zbwmLoJ_i6rzs3rQE_TF0C8ODFNGMIcRutTdILsLO8t9DT8PxxcJmNbi-uBqejzOZEdJlIEVVVKGvmUUFSqUglDRGEGZmPS8mtqMqScGAgjMq5YhVQKyzPx0pUjG-hk4XvtB83UFlouxRDT4NrTPjQ3jj9d9K6F_3s37SikipSJoODpUHwaQex042LFuratJB2ppkoC0GLnKqE7v9DX30f2vS9OZVzySjjiTpcUDb4GANMvsNQoudl6p8yE7z3O_43-lUd_wTUs5oc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674382123</pqid></control><display><type>article</type><title>Acoustic Metamaterials for Low-Frequency Noise Reduction Based on Parallel Connection of Multiple Spiral Chambers</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Duan, Haiqin ; Yang, Fei ; Shen, Xinmin ; Yin, Qin ; Wang, Enshuai ; Zhang, Xiaonan ; Yang, Xiaocui ; Shen, Cheng ; Peng, Wenqiang</creator><creatorcontrib>Duan, Haiqin ; Yang, Fei ; Shen, Xinmin ; Yin, Qin ; Wang, Enshuai ; Zhang, Xiaonan ; Yang, Xiaocui ; Shen, Cheng ; Peng, Wenqiang</creatorcontrib><description>Acoustic metamaterials based on Helmholtz resonance have perfect sound absorption characteristics with the subwavelength size, but the absorption bandwidth is narrow, which limits the practical applications for noise control with broadband. On the basis of the Fabry-Perot resonance principle, a novel sound absorber of the acoustic metamaterial by parallel connection of the multiple spiral chambers (abbreviated as MSC-AM) is proposed and investigated in this research. Through the theoretical modeling, finite element simulation, sample preparation and experimental validation, the effectiveness and practicability of the MSC-AM are verified. Actual sound absorption coefficients of the MSC-AM in the frequency range of 360-680 Hz (with the bandwidth Δ = 320 Hz) are larger than 0.8, which exhibit the extraordinarily low-frequency sound absorption performance. Moreover, actual sound absorption coefficients are above 0.5 in the 350-1600 Hz range (with a bandwidth Δ = 1250 Hz), which achieve broadband sound absorption in the low-middle frequency range. According to various actual demands, the structural parameters can be adjusted flexibly to realize the customization of sound absorption bandwidth, which provides a novel way to design and improve acoustic metamaterials to reduce the noise with various frequency bands and has promising prospects of application in low-frequency sound absorption.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15113882</identifier><identifier>PMID: 35683180</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Absorptivity ; Acoustic absorption ; Acoustic noise ; Acoustic resonance ; Acoustics ; Bandwidths ; Broadband ; Chambers ; Design ; Finite element method ; Frequencies ; Frequency ranges ; LF noise ; Metamaterials ; Noise control ; Noise reduction ; Resonance ; Sound ; Sound transmission</subject><ispartof>Materials, 2022-05, Vol.15 (11), p.3882</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-65689d59ca6831e81890d8a0602a84b783c6d7703e2e6a94392de1c6c34b96d23</citedby><cites>FETCH-LOGICAL-c406t-65689d59ca6831e81890d8a0602a84b783c6d7703e2e6a94392de1c6c34b96d23</cites><orcidid>0000-0002-2945-4896 ; 0009-0008-9114-1912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181907/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181907/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35683180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duan, Haiqin</creatorcontrib><creatorcontrib>Yang, Fei</creatorcontrib><creatorcontrib>Shen, Xinmin</creatorcontrib><creatorcontrib>Yin, Qin</creatorcontrib><creatorcontrib>Wang, Enshuai</creatorcontrib><creatorcontrib>Zhang, Xiaonan</creatorcontrib><creatorcontrib>Yang, Xiaocui</creatorcontrib><creatorcontrib>Shen, Cheng</creatorcontrib><creatorcontrib>Peng, Wenqiang</creatorcontrib><title>Acoustic Metamaterials for Low-Frequency Noise Reduction Based on Parallel Connection of Multiple Spiral Chambers</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Acoustic metamaterials based on Helmholtz resonance have perfect sound absorption characteristics with the subwavelength size, but the absorption bandwidth is narrow, which limits the practical applications for noise control with broadband. On the basis of the Fabry-Perot resonance principle, a novel sound absorber of the acoustic metamaterial by parallel connection of the multiple spiral chambers (abbreviated as MSC-AM) is proposed and investigated in this research. Through the theoretical modeling, finite element simulation, sample preparation and experimental validation, the effectiveness and practicability of the MSC-AM are verified. Actual sound absorption coefficients of the MSC-AM in the frequency range of 360-680 Hz (with the bandwidth Δ = 320 Hz) are larger than 0.8, which exhibit the extraordinarily low-frequency sound absorption performance. Moreover, actual sound absorption coefficients are above 0.5 in the 350-1600 Hz range (with a bandwidth Δ = 1250 Hz), which achieve broadband sound absorption in the low-middle frequency range. According to various actual demands, the structural parameters can be adjusted flexibly to realize the customization of sound absorption bandwidth, which provides a novel way to design and improve acoustic metamaterials to reduce the noise with various frequency bands and has promising prospects of application in low-frequency sound absorption.</description><subject>Absorptivity</subject><subject>Acoustic absorption</subject><subject>Acoustic noise</subject><subject>Acoustic resonance</subject><subject>Acoustics</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Chambers</subject><subject>Design</subject><subject>Finite element method</subject><subject>Frequencies</subject><subject>Frequency ranges</subject><subject>LF noise</subject><subject>Metamaterials</subject><subject>Noise control</subject><subject>Noise reduction</subject><subject>Resonance</subject><subject>Sound</subject><subject>Sound transmission</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtLxDAUhYMoKurGHyABNyJU82jTZCPo4KgwPvCxDpn0jkbaZiZpFf-9GWZ8ZpMD9-Pk5B6Edik54lyR48bQglIuJVtBm1QpkVGV56u_9AbaifGVpMM5lUytow1eCJk02USzU-v72DmLr6EzjekgOFNHPPEBj_x7Ngww66G1H_jGuwj4Hqreds63-MxEqHASdyaYuoYaD3zbwmLoJ_i6rzs3rQE_TF0C8ODFNGMIcRutTdILsLO8t9DT8PxxcJmNbi-uBqejzOZEdJlIEVVVKGvmUUFSqUglDRGEGZmPS8mtqMqScGAgjMq5YhVQKyzPx0pUjG-hk4XvtB83UFlouxRDT4NrTPjQ3jj9d9K6F_3s37SikipSJoODpUHwaQex042LFuratJB2ppkoC0GLnKqE7v9DX30f2vS9OZVzySjjiTpcUDb4GANMvsNQoudl6p8yE7z3O_43-lUd_wTUs5oc</recordid><startdate>20220529</startdate><enddate>20220529</enddate><creator>Duan, Haiqin</creator><creator>Yang, Fei</creator><creator>Shen, Xinmin</creator><creator>Yin, Qin</creator><creator>Wang, Enshuai</creator><creator>Zhang, Xiaonan</creator><creator>Yang, Xiaocui</creator><creator>Shen, Cheng</creator><creator>Peng, Wenqiang</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2945-4896</orcidid><orcidid>https://orcid.org/0009-0008-9114-1912</orcidid></search><sort><creationdate>20220529</creationdate><title>Acoustic Metamaterials for Low-Frequency Noise Reduction Based on Parallel Connection of Multiple Spiral Chambers</title><author>Duan, Haiqin ; Yang, Fei ; Shen, Xinmin ; Yin, Qin ; Wang, Enshuai ; Zhang, Xiaonan ; Yang, Xiaocui ; Shen, Cheng ; Peng, Wenqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-65689d59ca6831e81890d8a0602a84b783c6d7703e2e6a94392de1c6c34b96d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorptivity</topic><topic>Acoustic absorption</topic><topic>Acoustic noise</topic><topic>Acoustic resonance</topic><topic>Acoustics</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Chambers</topic><topic>Design</topic><topic>Finite element method</topic><topic>Frequencies</topic><topic>Frequency ranges</topic><topic>LF noise</topic><topic>Metamaterials</topic><topic>Noise control</topic><topic>Noise reduction</topic><topic>Resonance</topic><topic>Sound</topic><topic>Sound transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Haiqin</creatorcontrib><creatorcontrib>Yang, Fei</creatorcontrib><creatorcontrib>Shen, Xinmin</creatorcontrib><creatorcontrib>Yin, Qin</creatorcontrib><creatorcontrib>Wang, Enshuai</creatorcontrib><creatorcontrib>Zhang, Xiaonan</creatorcontrib><creatorcontrib>Yang, Xiaocui</creatorcontrib><creatorcontrib>Shen, Cheng</creatorcontrib><creatorcontrib>Peng, Wenqiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Haiqin</au><au>Yang, Fei</au><au>Shen, Xinmin</au><au>Yin, Qin</au><au>Wang, Enshuai</au><au>Zhang, Xiaonan</au><au>Yang, Xiaocui</au><au>Shen, Cheng</au><au>Peng, Wenqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic Metamaterials for Low-Frequency Noise Reduction Based on Parallel Connection of Multiple Spiral Chambers</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-05-29</date><risdate>2022</risdate><volume>15</volume><issue>11</issue><spage>3882</spage><pages>3882-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Acoustic metamaterials based on Helmholtz resonance have perfect sound absorption characteristics with the subwavelength size, but the absorption bandwidth is narrow, which limits the practical applications for noise control with broadband. On the basis of the Fabry-Perot resonance principle, a novel sound absorber of the acoustic metamaterial by parallel connection of the multiple spiral chambers (abbreviated as MSC-AM) is proposed and investigated in this research. Through the theoretical modeling, finite element simulation, sample preparation and experimental validation, the effectiveness and practicability of the MSC-AM are verified. Actual sound absorption coefficients of the MSC-AM in the frequency range of 360-680 Hz (with the bandwidth Δ = 320 Hz) are larger than 0.8, which exhibit the extraordinarily low-frequency sound absorption performance. Moreover, actual sound absorption coefficients are above 0.5 in the 350-1600 Hz range (with a bandwidth Δ = 1250 Hz), which achieve broadband sound absorption in the low-middle frequency range. According to various actual demands, the structural parameters can be adjusted flexibly to realize the customization of sound absorption bandwidth, which provides a novel way to design and improve acoustic metamaterials to reduce the noise with various frequency bands and has promising prospects of application in low-frequency sound absorption.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35683180</pmid><doi>10.3390/ma15113882</doi><orcidid>https://orcid.org/0000-0002-2945-4896</orcidid><orcidid>https://orcid.org/0009-0008-9114-1912</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-05, Vol.15 (11), p.3882
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9181907
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Absorptivity
Acoustic absorption
Acoustic noise
Acoustic resonance
Acoustics
Bandwidths
Broadband
Chambers
Design
Finite element method
Frequencies
Frequency ranges
LF noise
Metamaterials
Noise control
Noise reduction
Resonance
Sound
Sound transmission
title Acoustic Metamaterials for Low-Frequency Noise Reduction Based on Parallel Connection of Multiple Spiral Chambers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A08%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20Metamaterials%20for%20Low-Frequency%20Noise%20Reduction%20Based%20on%20Parallel%20Connection%20of%20Multiple%20Spiral%20Chambers&rft.jtitle=Materials&rft.au=Duan,%20Haiqin&rft.date=2022-05-29&rft.volume=15&rft.issue=11&rft.spage=3882&rft.pages=3882-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15113882&rft_dat=%3Cproquest_pubme%3E2674382123%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674382123&rft_id=info:pmid/35683180&rfr_iscdi=true