Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the sun and outer space
The sun (∼6,000 K) and outer space (∼3 K) are two significant renewable thermodynamic resources for human beings on Earth. The solar thermal conversion by photothermal (PT) and harvesting the coldness of outer space by radiative cooling (RC) have already attracted tremendous interest. However, most...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-04, Vol.119 (17), p.1-7 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 17 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Ao, Xianze Li, Bowen Zhao, Bin Hu, Mingke Ren, Hui Yang, Honglun Liu, Jie Cao, Jingyu Feng, Junsheng Yang, Yuanjun Qi, Zeming Li, Liangbin Zou, Chongwen Pei, Gang |
description | The sun (∼6,000 K) and outer space (∼3 K) are two significant renewable thermodynamic resources for human beings on Earth. The solar thermal conversion by photothermal (PT) and harvesting the coldness of outer space by radiative cooling (RC) have already attracted tremendous interest. However, most of the PT and RC approaches are static and monofunctional, which can only provide heating or cooling respectively under sunlight or darkness. Herein, a spectrally self-adaptive absorber/emitter (SSA/E) with strong solar absorption and switchable emissivity within the atmospheric window (i.e., 8 to 13 μm) was developed for the dynamic combination of PT and RC, corresponding to continuously efficient energy harvesting from the sun and rejecting energy to the universe. The as-fabricated SSA/E not only can be heated to ∼170 °C above ambient temperature under sunshine but also be cooled to 20 °C below ambient temperature, and thermal modeling captures the high energy harvesting efficiency of the SSA/E, enabling new technological capabilities. |
doi_str_mv | 10.1073/pnas.2120557119 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9169919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27151471</jstor_id><sourcerecordid>27151471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-71cdcc593f0ffb966a0f76c98031aa4beec7558b06be27d35ef0b8c989d111603</originalsourceid><addsrcrecordid>eNpdkc2L1DAYxoMo7rh69qQEvHjp7vu2TdNchGXxCxY8qOeQpslMhk5Sk3RgD_7vZmbW8eOUwPPLjzw8hLxEuELgzfXsVbqqsQbGOKJ4RFYIAquuFfCYrABqXvVt3V6QZyltAUCwHp6Si4a1jQBWr8jPr2aylRrVnN3eUOezWUeVXfA0WDpvQg55Y-JOTVT5kUY1OnUkdQiT82tqQyx3n51fwpKo8Sau7-lGxb1J-QjEsKPFQdPij46wZBNpmpU2z8kTq6ZkXjycl-T7h_ffbj9Vd18-fr69uas0A5ErjnrUmonGgrWD6DoFlnda9NCgUu1gjOaM9QN0g6n52DBjYehLLkZE7KC5JO9O3nkZdmbUxueoJjlHt1PxXgbl5L-Jdxu5DnspsBMCRRG8fRDE8GMpzeTOJW2mSXlTasu6Y3XfMTyib_5Dt2GJvtQ7UH3BAHmhrk-UjiGlaOz5MwjyMK08TCv_TFtevP67w5n_vWUBXp2AbcohnvOaI8OWY_MLhI6tFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658286017</pqid></control><display><type>article</type><title>Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the sun and outer space</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ao, Xianze ; Li, Bowen ; Zhao, Bin ; Hu, Mingke ; Ren, Hui ; Yang, Honglun ; Liu, Jie ; Cao, Jingyu ; Feng, Junsheng ; Yang, Yuanjun ; Qi, Zeming ; Li, Liangbin ; Zou, Chongwen ; Pei, Gang</creator><creatorcontrib>Ao, Xianze ; Li, Bowen ; Zhao, Bin ; Hu, Mingke ; Ren, Hui ; Yang, Honglun ; Liu, Jie ; Cao, Jingyu ; Feng, Junsheng ; Yang, Yuanjun ; Qi, Zeming ; Li, Liangbin ; Zou, Chongwen ; Pei, Gang</creatorcontrib><description>The sun (∼6,000 K) and outer space (∼3 K) are two significant renewable thermodynamic resources for human beings on Earth. The solar thermal conversion by photothermal (PT) and harvesting the coldness of outer space by radiative cooling (RC) have already attracted tremendous interest. However, most of the PT and RC approaches are static and monofunctional, which can only provide heating or cooling respectively under sunlight or darkness. Herein, a spectrally self-adaptive absorber/emitter (SSA/E) with strong solar absorption and switchable emissivity within the atmospheric window (i.e., 8 to 13 μm) was developed for the dynamic combination of PT and RC, corresponding to continuously efficient energy harvesting from the sun and rejecting energy to the universe. The as-fabricated SSA/E not only can be heated to ∼170 °C above ambient temperature under sunshine but also be cooled to 20 °C below ambient temperature, and thermal modeling captures the high energy harvesting efficiency of the SSA/E, enabling new technological capabilities.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2120557119</identifier><identifier>PMID: 35439052</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Ambient temperature ; Atmospheric models ; Atmospheric windows ; Cooling ; Darkness ; Emissivity ; Emitters ; Energy ; Energy harvesting ; Photothermal conversion ; Physical Sciences ; Solar heating ; Spectral emittance ; Sun ; Temperature ; Thermal analysis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-04, Vol.119 (17), p.1-7</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Apr 26, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-71cdcc593f0ffb966a0f76c98031aa4beec7558b06be27d35ef0b8c989d111603</citedby><cites>FETCH-LOGICAL-c509t-71cdcc593f0ffb966a0f76c98031aa4beec7558b06be27d35ef0b8c989d111603</cites><orcidid>0000-0001-5133-931X ; 0000-0002-6976-7416 ; 0000-0002-1887-9856 ; 0000-0002-6153-081X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169919/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169919/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35439052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ao, Xianze</creatorcontrib><creatorcontrib>Li, Bowen</creatorcontrib><creatorcontrib>Zhao, Bin</creatorcontrib><creatorcontrib>Hu, Mingke</creatorcontrib><creatorcontrib>Ren, Hui</creatorcontrib><creatorcontrib>Yang, Honglun</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Cao, Jingyu</creatorcontrib><creatorcontrib>Feng, Junsheng</creatorcontrib><creatorcontrib>Yang, Yuanjun</creatorcontrib><creatorcontrib>Qi, Zeming</creatorcontrib><creatorcontrib>Li, Liangbin</creatorcontrib><creatorcontrib>Zou, Chongwen</creatorcontrib><creatorcontrib>Pei, Gang</creatorcontrib><title>Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the sun and outer space</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The sun (∼6,000 K) and outer space (∼3 K) are two significant renewable thermodynamic resources for human beings on Earth. The solar thermal conversion by photothermal (PT) and harvesting the coldness of outer space by radiative cooling (RC) have already attracted tremendous interest. However, most of the PT and RC approaches are static and monofunctional, which can only provide heating or cooling respectively under sunlight or darkness. Herein, a spectrally self-adaptive absorber/emitter (SSA/E) with strong solar absorption and switchable emissivity within the atmospheric window (i.e., 8 to 13 μm) was developed for the dynamic combination of PT and RC, corresponding to continuously efficient energy harvesting from the sun and rejecting energy to the universe. The as-fabricated SSA/E not only can be heated to ∼170 °C above ambient temperature under sunshine but also be cooled to 20 °C below ambient temperature, and thermal modeling captures the high energy harvesting efficiency of the SSA/E, enabling new technological capabilities.</description><subject>Ambient temperature</subject><subject>Atmospheric models</subject><subject>Atmospheric windows</subject><subject>Cooling</subject><subject>Darkness</subject><subject>Emissivity</subject><subject>Emitters</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Photothermal conversion</subject><subject>Physical Sciences</subject><subject>Solar heating</subject><subject>Spectral emittance</subject><subject>Sun</subject><subject>Temperature</subject><subject>Thermal analysis</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkc2L1DAYxoMo7rh69qQEvHjp7vu2TdNchGXxCxY8qOeQpslMhk5Sk3RgD_7vZmbW8eOUwPPLjzw8hLxEuELgzfXsVbqqsQbGOKJ4RFYIAquuFfCYrABqXvVt3V6QZyltAUCwHp6Si4a1jQBWr8jPr2aylRrVnN3eUOezWUeVXfA0WDpvQg55Y-JOTVT5kUY1OnUkdQiT82tqQyx3n51fwpKo8Sau7-lGxb1J-QjEsKPFQdPij46wZBNpmpU2z8kTq6ZkXjycl-T7h_ffbj9Vd18-fr69uas0A5ErjnrUmonGgrWD6DoFlnda9NCgUu1gjOaM9QN0g6n52DBjYehLLkZE7KC5JO9O3nkZdmbUxueoJjlHt1PxXgbl5L-Jdxu5DnspsBMCRRG8fRDE8GMpzeTOJW2mSXlTasu6Y3XfMTyib_5Dt2GJvtQ7UH3BAHmhrk-UjiGlaOz5MwjyMK08TCv_TFtevP67w5n_vWUBXp2AbcohnvOaI8OWY_MLhI6tFg</recordid><startdate>20220426</startdate><enddate>20220426</enddate><creator>Ao, Xianze</creator><creator>Li, Bowen</creator><creator>Zhao, Bin</creator><creator>Hu, Mingke</creator><creator>Ren, Hui</creator><creator>Yang, Honglun</creator><creator>Liu, Jie</creator><creator>Cao, Jingyu</creator><creator>Feng, Junsheng</creator><creator>Yang, Yuanjun</creator><creator>Qi, Zeming</creator><creator>Li, Liangbin</creator><creator>Zou, Chongwen</creator><creator>Pei, Gang</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5133-931X</orcidid><orcidid>https://orcid.org/0000-0002-6976-7416</orcidid><orcidid>https://orcid.org/0000-0002-1887-9856</orcidid><orcidid>https://orcid.org/0000-0002-6153-081X</orcidid></search><sort><creationdate>20220426</creationdate><title>Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the sun and outer space</title><author>Ao, Xianze ; Li, Bowen ; Zhao, Bin ; Hu, Mingke ; Ren, Hui ; Yang, Honglun ; Liu, Jie ; Cao, Jingyu ; Feng, Junsheng ; Yang, Yuanjun ; Qi, Zeming ; Li, Liangbin ; Zou, Chongwen ; Pei, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-71cdcc593f0ffb966a0f76c98031aa4beec7558b06be27d35ef0b8c989d111603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ambient temperature</topic><topic>Atmospheric models</topic><topic>Atmospheric windows</topic><topic>Cooling</topic><topic>Darkness</topic><topic>Emissivity</topic><topic>Emitters</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Photothermal conversion</topic><topic>Physical Sciences</topic><topic>Solar heating</topic><topic>Spectral emittance</topic><topic>Sun</topic><topic>Temperature</topic><topic>Thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ao, Xianze</creatorcontrib><creatorcontrib>Li, Bowen</creatorcontrib><creatorcontrib>Zhao, Bin</creatorcontrib><creatorcontrib>Hu, Mingke</creatorcontrib><creatorcontrib>Ren, Hui</creatorcontrib><creatorcontrib>Yang, Honglun</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Cao, Jingyu</creatorcontrib><creatorcontrib>Feng, Junsheng</creatorcontrib><creatorcontrib>Yang, Yuanjun</creatorcontrib><creatorcontrib>Qi, Zeming</creatorcontrib><creatorcontrib>Li, Liangbin</creatorcontrib><creatorcontrib>Zou, Chongwen</creatorcontrib><creatorcontrib>Pei, Gang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ao, Xianze</au><au>Li, Bowen</au><au>Zhao, Bin</au><au>Hu, Mingke</au><au>Ren, Hui</au><au>Yang, Honglun</au><au>Liu, Jie</au><au>Cao, Jingyu</au><au>Feng, Junsheng</au><au>Yang, Yuanjun</au><au>Qi, Zeming</au><au>Li, Liangbin</au><au>Zou, Chongwen</au><au>Pei, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the sun and outer space</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-04-26</date><risdate>2022</risdate><volume>119</volume><issue>17</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The sun (∼6,000 K) and outer space (∼3 K) are two significant renewable thermodynamic resources for human beings on Earth. The solar thermal conversion by photothermal (PT) and harvesting the coldness of outer space by radiative cooling (RC) have already attracted tremendous interest. However, most of the PT and RC approaches are static and monofunctional, which can only provide heating or cooling respectively under sunlight or darkness. Herein, a spectrally self-adaptive absorber/emitter (SSA/E) with strong solar absorption and switchable emissivity within the atmospheric window (i.e., 8 to 13 μm) was developed for the dynamic combination of PT and RC, corresponding to continuously efficient energy harvesting from the sun and rejecting energy to the universe. The as-fabricated SSA/E not only can be heated to ∼170 °C above ambient temperature under sunshine but also be cooled to 20 °C below ambient temperature, and thermal modeling captures the high energy harvesting efficiency of the SSA/E, enabling new technological capabilities.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>35439052</pmid><doi>10.1073/pnas.2120557119</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5133-931X</orcidid><orcidid>https://orcid.org/0000-0002-6976-7416</orcidid><orcidid>https://orcid.org/0000-0002-1887-9856</orcidid><orcidid>https://orcid.org/0000-0002-6153-081X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-04, Vol.119 (17), p.1-7 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9169919 |
source | PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Ambient temperature Atmospheric models Atmospheric windows Cooling Darkness Emissivity Emitters Energy Energy harvesting Photothermal conversion Physical Sciences Solar heating Spectral emittance Sun Temperature Thermal analysis |
title | Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the sun and outer space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A44%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-adaptive%20integration%20of%20photothermal%20and%20radiative%20cooling%20for%20continuous%20energy%20harvesting%20from%20the%20sun%20and%20outer%20space&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ao,%20Xianze&rft.date=2022-04-26&rft.volume=119&rft.issue=17&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2120557119&rft_dat=%3Cjstor_pubme%3E27151471%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658286017&rft_id=info:pmid/35439052&rft_jstor_id=27151471&rfr_iscdi=true |