Glycogen, poly(3-hydroxybutyrate) and pigment accumulation in three Synechocystis strains when exposed to a stepwise increasing salt stress
The cyanobacterial genus Synechocystis is of particular interest to science and industry because of its efficient phototrophic metabolism, its accumulation of the polymer poly(3-hydroxybutyrate) (PHB) and its ability to withstand or adapt to adverse growing conditions. One such condition is the incr...
Gespeichert in:
Veröffentlicht in: | Journal of applied phycology 2022-06, Vol.34 (3), p.1227-1241 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1241 |
---|---|
container_issue | 3 |
container_start_page | 1227 |
container_title | Journal of applied phycology |
container_volume | 34 |
creator | Meixner, K. Daffert, C. Dalnodar, D. Mrázová, K. Hrubanová, K. Krzyzanek, V. Nebesarova, J. Samek, O. Šedrlová, Z. Slaninova, E. Sedláček, P. Obruča, S. Fritz, I. |
description | The cyanobacterial genus
Synechocystis
is of particular interest to science and industry because of its efficient phototrophic metabolism, its accumulation of the polymer poly(3-hydroxybutyrate) (PHB) and its ability to withstand or adapt to adverse growing conditions. One such condition is the increased salinity that can be caused by recycled or brackish water used in cultivation. While overall reduced growth is expected in response to salt stress, other metabolic responses relevant to the efficiency of phototrophic production of biomass or PHB (or both) have been experimentally observed in three
Synechocystis
strains at stepwise increasing salt concentrations. In response to recent reports on metabolic strategies to increase stress tolerance of heterotrophic and phototrophic bacteria, we focused particularly on the stress-induced response of
Synechocystis
strains in terms of PHB, glycogen and photoactive pigment dynamics. Of the three strains studied, the strain
Synechocystis
cf.
salina
CCALA192 proved to be the most tolerant to salt stress. In addition, this strain showed the highest PHB accumulation. All the three strains accumulated more PHB with increasing salinity, to the point where their photosystems were strongly inhibited and they could no longer produce enough energy to synthesize more PHB. |
doi_str_mv | 10.1007/s10811-022-02693-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9165259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674346896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-fda59ef43676e66ba38a0e3ed3198cc715a7780a09db934ad53e56797fbce6403</originalsourceid><addsrcrecordid>eNp9Uctu1TAUjBCI3hZ-gAWyxKaVCNhxbMebSqiCglSJBbC2HOckcZXYwXZo8w38NL7cUh4LFtZZzMMzmqJ4RvArgrF4HQluCClxVeXHJS3pg2JHmKAlI4I_LHZYVqRspCBHxXGM1xhj2ZDmcXFEGReUY7krvl9Om_EDuJdo8dN2Sstx64K_3do1bUEnOEPadWixwwwuIW3MOq-TTtY7ZB1KYwBAnzYHZvRmi8lGFFPQ1kV0M4JDcLv4CB1KHumMwHJjI2SlCaCjdQOKekp7CcT4pHjU6ynC07t7Unx59_bzxfvy6uPlh4s3V6WpRZ3KvtNMQl9TLjhw3mraaAwUOkpkY4wgTAvRYI1l10pa645RyH2l6FsDvMb0pDg_-C5rO0NncrGgJ7UEO-uwKa-t-htxdlSD_6Yk4axiMhuc3hkE_3WFmNRso4Fp0g78GlXFRU1r3kieqS_-oV77NbhcL7NyKFZjtk9UHVgm-BgD9PdhCFb7rdVha5W3Vj-3VjSLnv9Z417ya9xMoAdCzJAbIPz--z-2PwD4VLjy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667954050</pqid></control><display><type>article</type><title>Glycogen, poly(3-hydroxybutyrate) and pigment accumulation in three Synechocystis strains when exposed to a stepwise increasing salt stress</title><source>Springer Nature - Complete Springer Journals</source><creator>Meixner, K. ; Daffert, C. ; Dalnodar, D. ; Mrázová, K. ; Hrubanová, K. ; Krzyzanek, V. ; Nebesarova, J. ; Samek, O. ; Šedrlová, Z. ; Slaninova, E. ; Sedláček, P. ; Obruča, S. ; Fritz, I.</creator><creatorcontrib>Meixner, K. ; Daffert, C. ; Dalnodar, D. ; Mrázová, K. ; Hrubanová, K. ; Krzyzanek, V. ; Nebesarova, J. ; Samek, O. ; Šedrlová, Z. ; Slaninova, E. ; Sedláček, P. ; Obruča, S. ; Fritz, I.</creatorcontrib><description>The cyanobacterial genus
Synechocystis
is of particular interest to science and industry because of its efficient phototrophic metabolism, its accumulation of the polymer poly(3-hydroxybutyrate) (PHB) and its ability to withstand or adapt to adverse growing conditions. One such condition is the increased salinity that can be caused by recycled or brackish water used in cultivation. While overall reduced growth is expected in response to salt stress, other metabolic responses relevant to the efficiency of phototrophic production of biomass or PHB (or both) have been experimentally observed in three
Synechocystis
strains at stepwise increasing salt concentrations. In response to recent reports on metabolic strategies to increase stress tolerance of heterotrophic and phototrophic bacteria, we focused particularly on the stress-induced response of
Synechocystis
strains in terms of PHB, glycogen and photoactive pigment dynamics. Of the three strains studied, the strain
Synechocystis
cf.
salina
CCALA192 proved to be the most tolerant to salt stress. In addition, this strain showed the highest PHB accumulation. All the three strains accumulated more PHB with increasing salinity, to the point where their photosystems were strongly inhibited and they could no longer produce enough energy to synthesize more PHB.</description><identifier>ISSN: 0921-8971</identifier><identifier>EISSN: 1573-5176</identifier><identifier>DOI: 10.1007/s10811-022-02693-3</identifier><identifier>PMID: 35673609</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Abiotic stress ; Accumulation ; Bacteria ; Biomedical and Life Sciences ; Brackish water ; Ecology ; Freshwater & Marine Ecology ; Glycogen ; Glycogens ; Life Sciences ; Metabolic response ; Metabolism ; Microbiological strains ; Photosystems ; Phototrophic bacteria ; Plant Physiology ; Plant Sciences ; Poly-3-hydroxybutyrate ; Polyhydroxybutyrate ; Polymers ; Salinity ; Salinity effects ; Salinity tolerance ; Salts ; Strain ; Strains (organisms) ; Synechocystis ; Water reuse</subject><ispartof>Journal of applied phycology, 2022-06, Vol.34 (3), p.1227-1241</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022.</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-fda59ef43676e66ba38a0e3ed3198cc715a7780a09db934ad53e56797fbce6403</citedby><cites>FETCH-LOGICAL-c474t-fda59ef43676e66ba38a0e3ed3198cc715a7780a09db934ad53e56797fbce6403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10811-022-02693-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10811-022-02693-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35673609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meixner, K.</creatorcontrib><creatorcontrib>Daffert, C.</creatorcontrib><creatorcontrib>Dalnodar, D.</creatorcontrib><creatorcontrib>Mrázová, K.</creatorcontrib><creatorcontrib>Hrubanová, K.</creatorcontrib><creatorcontrib>Krzyzanek, V.</creatorcontrib><creatorcontrib>Nebesarova, J.</creatorcontrib><creatorcontrib>Samek, O.</creatorcontrib><creatorcontrib>Šedrlová, Z.</creatorcontrib><creatorcontrib>Slaninova, E.</creatorcontrib><creatorcontrib>Sedláček, P.</creatorcontrib><creatorcontrib>Obruča, S.</creatorcontrib><creatorcontrib>Fritz, I.</creatorcontrib><title>Glycogen, poly(3-hydroxybutyrate) and pigment accumulation in three Synechocystis strains when exposed to a stepwise increasing salt stress</title><title>Journal of applied phycology</title><addtitle>J Appl Phycol</addtitle><addtitle>J Appl Phycol</addtitle><description>The cyanobacterial genus
Synechocystis
is of particular interest to science and industry because of its efficient phototrophic metabolism, its accumulation of the polymer poly(3-hydroxybutyrate) (PHB) and its ability to withstand or adapt to adverse growing conditions. One such condition is the increased salinity that can be caused by recycled or brackish water used in cultivation. While overall reduced growth is expected in response to salt stress, other metabolic responses relevant to the efficiency of phototrophic production of biomass or PHB (or both) have been experimentally observed in three
Synechocystis
strains at stepwise increasing salt concentrations. In response to recent reports on metabolic strategies to increase stress tolerance of heterotrophic and phototrophic bacteria, we focused particularly on the stress-induced response of
Synechocystis
strains in terms of PHB, glycogen and photoactive pigment dynamics. Of the three strains studied, the strain
Synechocystis
cf.
salina
CCALA192 proved to be the most tolerant to salt stress. In addition, this strain showed the highest PHB accumulation. All the three strains accumulated more PHB with increasing salinity, to the point where their photosystems were strongly inhibited and they could no longer produce enough energy to synthesize more PHB.</description><subject>Abiotic stress</subject><subject>Accumulation</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Brackish water</subject><subject>Ecology</subject><subject>Freshwater & Marine Ecology</subject><subject>Glycogen</subject><subject>Glycogens</subject><subject>Life Sciences</subject><subject>Metabolic response</subject><subject>Metabolism</subject><subject>Microbiological strains</subject><subject>Photosystems</subject><subject>Phototrophic bacteria</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Poly-3-hydroxybutyrate</subject><subject>Polyhydroxybutyrate</subject><subject>Polymers</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salinity tolerance</subject><subject>Salts</subject><subject>Strain</subject><subject>Strains (organisms)</subject><subject>Synechocystis</subject><subject>Water reuse</subject><issn>0921-8971</issn><issn>1573-5176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9Uctu1TAUjBCI3hZ-gAWyxKaVCNhxbMebSqiCglSJBbC2HOckcZXYwXZo8w38NL7cUh4LFtZZzMMzmqJ4RvArgrF4HQluCClxVeXHJS3pg2JHmKAlI4I_LHZYVqRspCBHxXGM1xhj2ZDmcXFEGReUY7krvl9Om_EDuJdo8dN2Sstx64K_3do1bUEnOEPadWixwwwuIW3MOq-TTtY7ZB1KYwBAnzYHZvRmi8lGFFPQ1kV0M4JDcLv4CB1KHumMwHJjI2SlCaCjdQOKekp7CcT4pHjU6ynC07t7Unx59_bzxfvy6uPlh4s3V6WpRZ3KvtNMQl9TLjhw3mraaAwUOkpkY4wgTAvRYI1l10pa645RyH2l6FsDvMb0pDg_-C5rO0NncrGgJ7UEO-uwKa-t-htxdlSD_6Yk4axiMhuc3hkE_3WFmNRso4Fp0g78GlXFRU1r3kieqS_-oV77NbhcL7NyKFZjtk9UHVgm-BgD9PdhCFb7rdVha5W3Vj-3VjSLnv9Z417ya9xMoAdCzJAbIPz--z-2PwD4VLjy</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Meixner, K.</creator><creator>Daffert, C.</creator><creator>Dalnodar, D.</creator><creator>Mrázová, K.</creator><creator>Hrubanová, K.</creator><creator>Krzyzanek, V.</creator><creator>Nebesarova, J.</creator><creator>Samek, O.</creator><creator>Šedrlová, Z.</creator><creator>Slaninova, E.</creator><creator>Sedláček, P.</creator><creator>Obruča, S.</creator><creator>Fritz, I.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M0K</scope><scope>M7N</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220601</creationdate><title>Glycogen, poly(3-hydroxybutyrate) and pigment accumulation in three Synechocystis strains when exposed to a stepwise increasing salt stress</title><author>Meixner, K. ; Daffert, C. ; Dalnodar, D. ; Mrázová, K. ; Hrubanová, K. ; Krzyzanek, V. ; Nebesarova, J. ; Samek, O. ; Šedrlová, Z. ; Slaninova, E. ; Sedláček, P. ; Obruča, S. ; Fritz, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-fda59ef43676e66ba38a0e3ed3198cc715a7780a09db934ad53e56797fbce6403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abiotic stress</topic><topic>Accumulation</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Brackish water</topic><topic>Ecology</topic><topic>Freshwater & Marine Ecology</topic><topic>Glycogen</topic><topic>Glycogens</topic><topic>Life Sciences</topic><topic>Metabolic response</topic><topic>Metabolism</topic><topic>Microbiological strains</topic><topic>Photosystems</topic><topic>Phototrophic bacteria</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Poly-3-hydroxybutyrate</topic><topic>Polyhydroxybutyrate</topic><topic>Polymers</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salinity tolerance</topic><topic>Salts</topic><topic>Strain</topic><topic>Strains (organisms)</topic><topic>Synechocystis</topic><topic>Water reuse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meixner, K.</creatorcontrib><creatorcontrib>Daffert, C.</creatorcontrib><creatorcontrib>Dalnodar, D.</creatorcontrib><creatorcontrib>Mrázová, K.</creatorcontrib><creatorcontrib>Hrubanová, K.</creatorcontrib><creatorcontrib>Krzyzanek, V.</creatorcontrib><creatorcontrib>Nebesarova, J.</creatorcontrib><creatorcontrib>Samek, O.</creatorcontrib><creatorcontrib>Šedrlová, Z.</creatorcontrib><creatorcontrib>Slaninova, E.</creatorcontrib><creatorcontrib>Sedláček, P.</creatorcontrib><creatorcontrib>Obruča, S.</creatorcontrib><creatorcontrib>Fritz, I.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied phycology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meixner, K.</au><au>Daffert, C.</au><au>Dalnodar, D.</au><au>Mrázová, K.</au><au>Hrubanová, K.</au><au>Krzyzanek, V.</au><au>Nebesarova, J.</au><au>Samek, O.</au><au>Šedrlová, Z.</au><au>Slaninova, E.</au><au>Sedláček, P.</au><au>Obruča, S.</au><au>Fritz, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycogen, poly(3-hydroxybutyrate) and pigment accumulation in three Synechocystis strains when exposed to a stepwise increasing salt stress</atitle><jtitle>Journal of applied phycology</jtitle><stitle>J Appl Phycol</stitle><addtitle>J Appl Phycol</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>34</volume><issue>3</issue><spage>1227</spage><epage>1241</epage><pages>1227-1241</pages><issn>0921-8971</issn><eissn>1573-5176</eissn><abstract>The cyanobacterial genus
Synechocystis
is of particular interest to science and industry because of its efficient phototrophic metabolism, its accumulation of the polymer poly(3-hydroxybutyrate) (PHB) and its ability to withstand or adapt to adverse growing conditions. One such condition is the increased salinity that can be caused by recycled or brackish water used in cultivation. While overall reduced growth is expected in response to salt stress, other metabolic responses relevant to the efficiency of phototrophic production of biomass or PHB (or both) have been experimentally observed in three
Synechocystis
strains at stepwise increasing salt concentrations. In response to recent reports on metabolic strategies to increase stress tolerance of heterotrophic and phototrophic bacteria, we focused particularly on the stress-induced response of
Synechocystis
strains in terms of PHB, glycogen and photoactive pigment dynamics. Of the three strains studied, the strain
Synechocystis
cf.
salina
CCALA192 proved to be the most tolerant to salt stress. In addition, this strain showed the highest PHB accumulation. All the three strains accumulated more PHB with increasing salinity, to the point where their photosystems were strongly inhibited and they could no longer produce enough energy to synthesize more PHB.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>35673609</pmid><doi>10.1007/s10811-022-02693-3</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-8971 |
ispartof | Journal of applied phycology, 2022-06, Vol.34 (3), p.1227-1241 |
issn | 0921-8971 1573-5176 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9165259 |
source | Springer Nature - Complete Springer Journals |
subjects | Abiotic stress Accumulation Bacteria Biomedical and Life Sciences Brackish water Ecology Freshwater & Marine Ecology Glycogen Glycogens Life Sciences Metabolic response Metabolism Microbiological strains Photosystems Phototrophic bacteria Plant Physiology Plant Sciences Poly-3-hydroxybutyrate Polyhydroxybutyrate Polymers Salinity Salinity effects Salinity tolerance Salts Strain Strains (organisms) Synechocystis Water reuse |
title | Glycogen, poly(3-hydroxybutyrate) and pigment accumulation in three Synechocystis strains when exposed to a stepwise increasing salt stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T16%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycogen,%20poly(3-hydroxybutyrate)%20and%20pigment%20accumulation%20in%20three%20Synechocystis%20strains%20when%20exposed%20to%20a%20stepwise%20increasing%20salt%20stress&rft.jtitle=Journal%20of%20applied%20phycology&rft.au=Meixner,%20K.&rft.date=2022-06-01&rft.volume=34&rft.issue=3&rft.spage=1227&rft.epage=1241&rft.pages=1227-1241&rft.issn=0921-8971&rft.eissn=1573-5176&rft_id=info:doi/10.1007/s10811-022-02693-3&rft_dat=%3Cproquest_pubme%3E2674346896%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667954050&rft_id=info:pmid/35673609&rfr_iscdi=true |