Glycogen, poly(3-hydroxybutyrate) and pigment accumulation in three Synechocystis strains when exposed to a stepwise increasing salt stress

The cyanobacterial genus Synechocystis is of particular interest to science and industry because of its efficient phototrophic metabolism, its accumulation of the polymer poly(3-hydroxybutyrate) (PHB) and its ability to withstand or adapt to adverse growing conditions. One such condition is the incr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied phycology 2022-06, Vol.34 (3), p.1227-1241
Hauptverfasser: Meixner, K., Daffert, C., Dalnodar, D., Mrázová, K., Hrubanová, K., Krzyzanek, V., Nebesarova, J., Samek, O., Šedrlová, Z., Slaninova, E., Sedláček, P., Obruča, S., Fritz, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1241
container_issue 3
container_start_page 1227
container_title Journal of applied phycology
container_volume 34
creator Meixner, K.
Daffert, C.
Dalnodar, D.
Mrázová, K.
Hrubanová, K.
Krzyzanek, V.
Nebesarova, J.
Samek, O.
Šedrlová, Z.
Slaninova, E.
Sedláček, P.
Obruča, S.
Fritz, I.
description The cyanobacterial genus Synechocystis is of particular interest to science and industry because of its efficient phototrophic metabolism, its accumulation of the polymer poly(3-hydroxybutyrate) (PHB) and its ability to withstand or adapt to adverse growing conditions. One such condition is the increased salinity that can be caused by recycled or brackish water used in cultivation. While overall reduced growth is expected in response to salt stress, other metabolic responses relevant to the efficiency of phototrophic production of biomass or PHB (or both) have been experimentally observed in three Synechocystis strains at stepwise increasing salt concentrations. In response to recent reports on metabolic strategies to increase stress tolerance of heterotrophic and phototrophic bacteria, we focused particularly on the stress-induced response of Synechocystis strains in terms of PHB, glycogen and photoactive pigment dynamics. Of the three strains studied, the strain Synechocystis cf. salina CCALA192 proved to be the most tolerant to salt stress. In addition, this strain showed the highest PHB accumulation. All the three strains accumulated more PHB with increasing salinity, to the point where their photosystems were strongly inhibited and they could no longer produce enough energy to synthesize more PHB.
doi_str_mv 10.1007/s10811-022-02693-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9165259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674346896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-fda59ef43676e66ba38a0e3ed3198cc715a7780a09db934ad53e56797fbce6403</originalsourceid><addsrcrecordid>eNp9Uctu1TAUjBCI3hZ-gAWyxKaVCNhxbMebSqiCglSJBbC2HOckcZXYwXZo8w38NL7cUh4LFtZZzMMzmqJ4RvArgrF4HQluCClxVeXHJS3pg2JHmKAlI4I_LHZYVqRspCBHxXGM1xhj2ZDmcXFEGReUY7krvl9Om_EDuJdo8dN2Sstx64K_3do1bUEnOEPadWixwwwuIW3MOq-TTtY7ZB1KYwBAnzYHZvRmi8lGFFPQ1kV0M4JDcLv4CB1KHumMwHJjI2SlCaCjdQOKekp7CcT4pHjU6ynC07t7Unx59_bzxfvy6uPlh4s3V6WpRZ3KvtNMQl9TLjhw3mraaAwUOkpkY4wgTAvRYI1l10pa645RyH2l6FsDvMb0pDg_-C5rO0NncrGgJ7UEO-uwKa-t-htxdlSD_6Yk4axiMhuc3hkE_3WFmNRso4Fp0g78GlXFRU1r3kieqS_-oV77NbhcL7NyKFZjtk9UHVgm-BgD9PdhCFb7rdVha5W3Vj-3VjSLnv9Z417ya9xMoAdCzJAbIPz--z-2PwD4VLjy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667954050</pqid></control><display><type>article</type><title>Glycogen, poly(3-hydroxybutyrate) and pigment accumulation in three Synechocystis strains when exposed to a stepwise increasing salt stress</title><source>Springer Nature - Complete Springer Journals</source><creator>Meixner, K. ; Daffert, C. ; Dalnodar, D. ; Mrázová, K. ; Hrubanová, K. ; Krzyzanek, V. ; Nebesarova, J. ; Samek, O. ; Šedrlová, Z. ; Slaninova, E. ; Sedláček, P. ; Obruča, S. ; Fritz, I.</creator><creatorcontrib>Meixner, K. ; Daffert, C. ; Dalnodar, D. ; Mrázová, K. ; Hrubanová, K. ; Krzyzanek, V. ; Nebesarova, J. ; Samek, O. ; Šedrlová, Z. ; Slaninova, E. ; Sedláček, P. ; Obruča, S. ; Fritz, I.</creatorcontrib><description>The cyanobacterial genus Synechocystis is of particular interest to science and industry because of its efficient phototrophic metabolism, its accumulation of the polymer poly(3-hydroxybutyrate) (PHB) and its ability to withstand or adapt to adverse growing conditions. One such condition is the increased salinity that can be caused by recycled or brackish water used in cultivation. While overall reduced growth is expected in response to salt stress, other metabolic responses relevant to the efficiency of phototrophic production of biomass or PHB (or both) have been experimentally observed in three Synechocystis strains at stepwise increasing salt concentrations. In response to recent reports on metabolic strategies to increase stress tolerance of heterotrophic and phototrophic bacteria, we focused particularly on the stress-induced response of Synechocystis strains in terms of PHB, glycogen and photoactive pigment dynamics. Of the three strains studied, the strain Synechocystis cf. salina CCALA192 proved to be the most tolerant to salt stress. In addition, this strain showed the highest PHB accumulation. All the three strains accumulated more PHB with increasing salinity, to the point where their photosystems were strongly inhibited and they could no longer produce enough energy to synthesize more PHB.</description><identifier>ISSN: 0921-8971</identifier><identifier>EISSN: 1573-5176</identifier><identifier>DOI: 10.1007/s10811-022-02693-3</identifier><identifier>PMID: 35673609</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Abiotic stress ; Accumulation ; Bacteria ; Biomedical and Life Sciences ; Brackish water ; Ecology ; Freshwater &amp; Marine Ecology ; Glycogen ; Glycogens ; Life Sciences ; Metabolic response ; Metabolism ; Microbiological strains ; Photosystems ; Phototrophic bacteria ; Plant Physiology ; Plant Sciences ; Poly-3-hydroxybutyrate ; Polyhydroxybutyrate ; Polymers ; Salinity ; Salinity effects ; Salinity tolerance ; Salts ; Strain ; Strains (organisms) ; Synechocystis ; Water reuse</subject><ispartof>Journal of applied phycology, 2022-06, Vol.34 (3), p.1227-1241</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022.</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-fda59ef43676e66ba38a0e3ed3198cc715a7780a09db934ad53e56797fbce6403</citedby><cites>FETCH-LOGICAL-c474t-fda59ef43676e66ba38a0e3ed3198cc715a7780a09db934ad53e56797fbce6403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10811-022-02693-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10811-022-02693-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35673609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meixner, K.</creatorcontrib><creatorcontrib>Daffert, C.</creatorcontrib><creatorcontrib>Dalnodar, D.</creatorcontrib><creatorcontrib>Mrázová, K.</creatorcontrib><creatorcontrib>Hrubanová, K.</creatorcontrib><creatorcontrib>Krzyzanek, V.</creatorcontrib><creatorcontrib>Nebesarova, J.</creatorcontrib><creatorcontrib>Samek, O.</creatorcontrib><creatorcontrib>Šedrlová, Z.</creatorcontrib><creatorcontrib>Slaninova, E.</creatorcontrib><creatorcontrib>Sedláček, P.</creatorcontrib><creatorcontrib>Obruča, S.</creatorcontrib><creatorcontrib>Fritz, I.</creatorcontrib><title>Glycogen, poly(3-hydroxybutyrate) and pigment accumulation in three Synechocystis strains when exposed to a stepwise increasing salt stress</title><title>Journal of applied phycology</title><addtitle>J Appl Phycol</addtitle><addtitle>J Appl Phycol</addtitle><description>The cyanobacterial genus Synechocystis is of particular interest to science and industry because of its efficient phototrophic metabolism, its accumulation of the polymer poly(3-hydroxybutyrate) (PHB) and its ability to withstand or adapt to adverse growing conditions. One such condition is the increased salinity that can be caused by recycled or brackish water used in cultivation. While overall reduced growth is expected in response to salt stress, other metabolic responses relevant to the efficiency of phototrophic production of biomass or PHB (or both) have been experimentally observed in three Synechocystis strains at stepwise increasing salt concentrations. In response to recent reports on metabolic strategies to increase stress tolerance of heterotrophic and phototrophic bacteria, we focused particularly on the stress-induced response of Synechocystis strains in terms of PHB, glycogen and photoactive pigment dynamics. Of the three strains studied, the strain Synechocystis cf. salina CCALA192 proved to be the most tolerant to salt stress. In addition, this strain showed the highest PHB accumulation. All the three strains accumulated more PHB with increasing salinity, to the point where their photosystems were strongly inhibited and they could no longer produce enough energy to synthesize more PHB.</description><subject>Abiotic stress</subject><subject>Accumulation</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Brackish water</subject><subject>Ecology</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Glycogen</subject><subject>Glycogens</subject><subject>Life Sciences</subject><subject>Metabolic response</subject><subject>Metabolism</subject><subject>Microbiological strains</subject><subject>Photosystems</subject><subject>Phototrophic bacteria</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Poly-3-hydroxybutyrate</subject><subject>Polyhydroxybutyrate</subject><subject>Polymers</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salinity tolerance</subject><subject>Salts</subject><subject>Strain</subject><subject>Strains (organisms)</subject><subject>Synechocystis</subject><subject>Water reuse</subject><issn>0921-8971</issn><issn>1573-5176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9Uctu1TAUjBCI3hZ-gAWyxKaVCNhxbMebSqiCglSJBbC2HOckcZXYwXZo8w38NL7cUh4LFtZZzMMzmqJ4RvArgrF4HQluCClxVeXHJS3pg2JHmKAlI4I_LHZYVqRspCBHxXGM1xhj2ZDmcXFEGReUY7krvl9Om_EDuJdo8dN2Sstx64K_3do1bUEnOEPadWixwwwuIW3MOq-TTtY7ZB1KYwBAnzYHZvRmi8lGFFPQ1kV0M4JDcLv4CB1KHumMwHJjI2SlCaCjdQOKekp7CcT4pHjU6ynC07t7Unx59_bzxfvy6uPlh4s3V6WpRZ3KvtNMQl9TLjhw3mraaAwUOkpkY4wgTAvRYI1l10pa645RyH2l6FsDvMb0pDg_-C5rO0NncrGgJ7UEO-uwKa-t-htxdlSD_6Yk4axiMhuc3hkE_3WFmNRso4Fp0g78GlXFRU1r3kieqS_-oV77NbhcL7NyKFZjtk9UHVgm-BgD9PdhCFb7rdVha5W3Vj-3VjSLnv9Z417ya9xMoAdCzJAbIPz--z-2PwD4VLjy</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Meixner, K.</creator><creator>Daffert, C.</creator><creator>Dalnodar, D.</creator><creator>Mrázová, K.</creator><creator>Hrubanová, K.</creator><creator>Krzyzanek, V.</creator><creator>Nebesarova, J.</creator><creator>Samek, O.</creator><creator>Šedrlová, Z.</creator><creator>Slaninova, E.</creator><creator>Sedláček, P.</creator><creator>Obruča, S.</creator><creator>Fritz, I.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M0K</scope><scope>M7N</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220601</creationdate><title>Glycogen, poly(3-hydroxybutyrate) and pigment accumulation in three Synechocystis strains when exposed to a stepwise increasing salt stress</title><author>Meixner, K. ; Daffert, C. ; Dalnodar, D. ; Mrázová, K. ; Hrubanová, K. ; Krzyzanek, V. ; Nebesarova, J. ; Samek, O. ; Šedrlová, Z. ; Slaninova, E. ; Sedláček, P. ; Obruča, S. ; Fritz, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-fda59ef43676e66ba38a0e3ed3198cc715a7780a09db934ad53e56797fbce6403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abiotic stress</topic><topic>Accumulation</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Brackish water</topic><topic>Ecology</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Glycogen</topic><topic>Glycogens</topic><topic>Life Sciences</topic><topic>Metabolic response</topic><topic>Metabolism</topic><topic>Microbiological strains</topic><topic>Photosystems</topic><topic>Phototrophic bacteria</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Poly-3-hydroxybutyrate</topic><topic>Polyhydroxybutyrate</topic><topic>Polymers</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salinity tolerance</topic><topic>Salts</topic><topic>Strain</topic><topic>Strains (organisms)</topic><topic>Synechocystis</topic><topic>Water reuse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meixner, K.</creatorcontrib><creatorcontrib>Daffert, C.</creatorcontrib><creatorcontrib>Dalnodar, D.</creatorcontrib><creatorcontrib>Mrázová, K.</creatorcontrib><creatorcontrib>Hrubanová, K.</creatorcontrib><creatorcontrib>Krzyzanek, V.</creatorcontrib><creatorcontrib>Nebesarova, J.</creatorcontrib><creatorcontrib>Samek, O.</creatorcontrib><creatorcontrib>Šedrlová, Z.</creatorcontrib><creatorcontrib>Slaninova, E.</creatorcontrib><creatorcontrib>Sedláček, P.</creatorcontrib><creatorcontrib>Obruča, S.</creatorcontrib><creatorcontrib>Fritz, I.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied phycology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meixner, K.</au><au>Daffert, C.</au><au>Dalnodar, D.</au><au>Mrázová, K.</au><au>Hrubanová, K.</au><au>Krzyzanek, V.</au><au>Nebesarova, J.</au><au>Samek, O.</au><au>Šedrlová, Z.</au><au>Slaninova, E.</au><au>Sedláček, P.</au><au>Obruča, S.</au><au>Fritz, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycogen, poly(3-hydroxybutyrate) and pigment accumulation in three Synechocystis strains when exposed to a stepwise increasing salt stress</atitle><jtitle>Journal of applied phycology</jtitle><stitle>J Appl Phycol</stitle><addtitle>J Appl Phycol</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>34</volume><issue>3</issue><spage>1227</spage><epage>1241</epage><pages>1227-1241</pages><issn>0921-8971</issn><eissn>1573-5176</eissn><abstract>The cyanobacterial genus Synechocystis is of particular interest to science and industry because of its efficient phototrophic metabolism, its accumulation of the polymer poly(3-hydroxybutyrate) (PHB) and its ability to withstand or adapt to adverse growing conditions. One such condition is the increased salinity that can be caused by recycled or brackish water used in cultivation. While overall reduced growth is expected in response to salt stress, other metabolic responses relevant to the efficiency of phototrophic production of biomass or PHB (or both) have been experimentally observed in three Synechocystis strains at stepwise increasing salt concentrations. In response to recent reports on metabolic strategies to increase stress tolerance of heterotrophic and phototrophic bacteria, we focused particularly on the stress-induced response of Synechocystis strains in terms of PHB, glycogen and photoactive pigment dynamics. Of the three strains studied, the strain Synechocystis cf. salina CCALA192 proved to be the most tolerant to salt stress. In addition, this strain showed the highest PHB accumulation. All the three strains accumulated more PHB with increasing salinity, to the point where their photosystems were strongly inhibited and they could no longer produce enough energy to synthesize more PHB.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>35673609</pmid><doi>10.1007/s10811-022-02693-3</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-8971
ispartof Journal of applied phycology, 2022-06, Vol.34 (3), p.1227-1241
issn 0921-8971
1573-5176
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9165259
source Springer Nature - Complete Springer Journals
subjects Abiotic stress
Accumulation
Bacteria
Biomedical and Life Sciences
Brackish water
Ecology
Freshwater & Marine Ecology
Glycogen
Glycogens
Life Sciences
Metabolic response
Metabolism
Microbiological strains
Photosystems
Phototrophic bacteria
Plant Physiology
Plant Sciences
Poly-3-hydroxybutyrate
Polyhydroxybutyrate
Polymers
Salinity
Salinity effects
Salinity tolerance
Salts
Strain
Strains (organisms)
Synechocystis
Water reuse
title Glycogen, poly(3-hydroxybutyrate) and pigment accumulation in three Synechocystis strains when exposed to a stepwise increasing salt stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T16%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycogen,%20poly(3-hydroxybutyrate)%20and%20pigment%20accumulation%20in%20three%20Synechocystis%20strains%20when%20exposed%20to%20a%20stepwise%20increasing%20salt%20stress&rft.jtitle=Journal%20of%20applied%20phycology&rft.au=Meixner,%20K.&rft.date=2022-06-01&rft.volume=34&rft.issue=3&rft.spage=1227&rft.epage=1241&rft.pages=1227-1241&rft.issn=0921-8971&rft.eissn=1573-5176&rft_id=info:doi/10.1007/s10811-022-02693-3&rft_dat=%3Cproquest_pubme%3E2674346896%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667954050&rft_id=info:pmid/35673609&rfr_iscdi=true