Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications

Over the past few decades, microrheology has emerged as a widely used technique to measure the mechanical properties of soft viscoelastic materials. Optical tweezers offer a powerful platform for performing microrheology measurements and can measure rheological properties at the level of single mole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS macro letters 2018-08, Vol.7 (8), p.968-975
1. Verfasser: Robertson-Anderson, Rae M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 975
container_issue 8
container_start_page 968
container_title ACS macro letters
container_volume 7
creator Robertson-Anderson, Rae M
description Over the past few decades, microrheology has emerged as a widely used technique to measure the mechanical properties of soft viscoelastic materials. Optical tweezers offer a powerful platform for performing microrheology measurements and can measure rheological properties at the level of single molecules out to near macroscopic scales. Unlike passive microrheology methods, which use diffusing microspheres to extract rheological properties, optical tweezers can probe the nonlinear viscoelastic response, and measure the space- and time-dependent rheological properties of heterogeneous, nonequilibrium materials. In this Viewpoint, I describe the basic principles underlying optical tweezers microrheology, the instrumentation and material requirements, and key applications to widely studied soft biological materials. I also describe several sophisticated approaches that include coupling optical tweezers to fluorescence microscopy and microfluidics. The described techniques can robustly characterize noncontinuum mechanics, nonlinear mechanical responses, strain-field heterogeneities, stress propagation, force relaxation dynamics, and time-dependent mechanics of active materials.
doi_str_mv 10.1021/acsmacrolett.8b00498
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9163451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672705559</sourcerecordid><originalsourceid>FETCH-LOGICAL-a515t-af2f9f577708be8128089d169b3d95b7835f916c6d7798fc065c3bc6287752fa3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMotmj_gUiWblqTmeblQqjFFyhuKi5DJpNpIzOTMUkr9dcbaS11YzY3kHO-m3sPAGcYjTDK8KXSoVHau9rEOOIFQmPBD0A_wxQPMSX54d69BwYhvKN0CMVcjI9BLyeUIEFRH7y9dNFqVcPZpzFfxgf4bBPXL4yr3Xx9Be-8a2BcGHijgtUBRgcn5Uq12pRwZvSitR9LE6BqSzjpujqxonVtOAVHlaqDGWzrCXi9u51NH4ZPL_eP08nTUBFM4lBVWSUqwhhDvDAcZxxxUWIqirwUpGA8J5XAVNOSMcErjSjReaFpxhkjWaXyE3C94XbLojGlNm30qpadt43ya-mUlX9fWruQc7eSiZqPCU6Aiy3Au59Jomxs0KauVWvcMsiMsowhQohI0vFGmhYUgjfVrg1G8icWuR-L3MaSbOf7X9yZfkNIArQRJLt8d0vfpo39z_wGIs6eSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672705559</pqid></control><display><type>article</type><title>Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications</title><source>ACS Publications</source><creator>Robertson-Anderson, Rae M</creator><creatorcontrib>Robertson-Anderson, Rae M</creatorcontrib><description>Over the past few decades, microrheology has emerged as a widely used technique to measure the mechanical properties of soft viscoelastic materials. Optical tweezers offer a powerful platform for performing microrheology measurements and can measure rheological properties at the level of single molecules out to near macroscopic scales. Unlike passive microrheology methods, which use diffusing microspheres to extract rheological properties, optical tweezers can probe the nonlinear viscoelastic response, and measure the space- and time-dependent rheological properties of heterogeneous, nonequilibrium materials. In this Viewpoint, I describe the basic principles underlying optical tweezers microrheology, the instrumentation and material requirements, and key applications to widely studied soft biological materials. I also describe several sophisticated approaches that include coupling optical tweezers to fluorescence microscopy and microfluidics. The described techniques can robustly characterize noncontinuum mechanics, nonlinear mechanical responses, strain-field heterogeneities, stress propagation, force relaxation dynamics, and time-dependent mechanics of active materials.</description><identifier>ISSN: 2161-1653</identifier><identifier>EISSN: 2161-1653</identifier><identifier>DOI: 10.1021/acsmacrolett.8b00498</identifier><identifier>PMID: 35650960</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS macro letters, 2018-08, Vol.7 (8), p.968-975</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a515t-af2f9f577708be8128089d169b3d95b7835f916c6d7798fc065c3bc6287752fa3</citedby><cites>FETCH-LOGICAL-a515t-af2f9f577708be8128089d169b3d95b7835f916c6d7798fc065c3bc6287752fa3</cites><orcidid>0000-0003-4475-4667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsmacrolett.8b00498$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsmacrolett.8b00498$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35650960$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robertson-Anderson, Rae M</creatorcontrib><title>Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications</title><title>ACS macro letters</title><addtitle>ACS Macro Lett</addtitle><description>Over the past few decades, microrheology has emerged as a widely used technique to measure the mechanical properties of soft viscoelastic materials. Optical tweezers offer a powerful platform for performing microrheology measurements and can measure rheological properties at the level of single molecules out to near macroscopic scales. Unlike passive microrheology methods, which use diffusing microspheres to extract rheological properties, optical tweezers can probe the nonlinear viscoelastic response, and measure the space- and time-dependent rheological properties of heterogeneous, nonequilibrium materials. In this Viewpoint, I describe the basic principles underlying optical tweezers microrheology, the instrumentation and material requirements, and key applications to widely studied soft biological materials. I also describe several sophisticated approaches that include coupling optical tweezers to fluorescence microscopy and microfluidics. The described techniques can robustly characterize noncontinuum mechanics, nonlinear mechanical responses, strain-field heterogeneities, stress propagation, force relaxation dynamics, and time-dependent mechanics of active materials.</description><issn>2161-1653</issn><issn>2161-1653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLAzEUhYMotmj_gUiWblqTmeblQqjFFyhuKi5DJpNpIzOTMUkr9dcbaS11YzY3kHO-m3sPAGcYjTDK8KXSoVHau9rEOOIFQmPBD0A_wxQPMSX54d69BwYhvKN0CMVcjI9BLyeUIEFRH7y9dNFqVcPZpzFfxgf4bBPXL4yr3Xx9Be-8a2BcGHijgtUBRgcn5Uq12pRwZvSitR9LE6BqSzjpujqxonVtOAVHlaqDGWzrCXi9u51NH4ZPL_eP08nTUBFM4lBVWSUqwhhDvDAcZxxxUWIqirwUpGA8J5XAVNOSMcErjSjReaFpxhkjWaXyE3C94XbLojGlNm30qpadt43ya-mUlX9fWruQc7eSiZqPCU6Aiy3Au59Jomxs0KauVWvcMsiMsowhQohI0vFGmhYUgjfVrg1G8icWuR-L3MaSbOf7X9yZfkNIArQRJLt8d0vfpo39z_wGIs6eSQ</recordid><startdate>20180821</startdate><enddate>20180821</enddate><creator>Robertson-Anderson, Rae M</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4475-4667</orcidid></search><sort><creationdate>20180821</creationdate><title>Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications</title><author>Robertson-Anderson, Rae M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a515t-af2f9f577708be8128089d169b3d95b7835f916c6d7798fc065c3bc6287752fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Robertson-Anderson, Rae M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS macro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robertson-Anderson, Rae M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications</atitle><jtitle>ACS macro letters</jtitle><addtitle>ACS Macro Lett</addtitle><date>2018-08-21</date><risdate>2018</risdate><volume>7</volume><issue>8</issue><spage>968</spage><epage>975</epage><pages>968-975</pages><issn>2161-1653</issn><eissn>2161-1653</eissn><abstract>Over the past few decades, microrheology has emerged as a widely used technique to measure the mechanical properties of soft viscoelastic materials. Optical tweezers offer a powerful platform for performing microrheology measurements and can measure rheological properties at the level of single molecules out to near macroscopic scales. Unlike passive microrheology methods, which use diffusing microspheres to extract rheological properties, optical tweezers can probe the nonlinear viscoelastic response, and measure the space- and time-dependent rheological properties of heterogeneous, nonequilibrium materials. In this Viewpoint, I describe the basic principles underlying optical tweezers microrheology, the instrumentation and material requirements, and key applications to widely studied soft biological materials. I also describe several sophisticated approaches that include coupling optical tweezers to fluorescence microscopy and microfluidics. The described techniques can robustly characterize noncontinuum mechanics, nonlinear mechanical responses, strain-field heterogeneities, stress propagation, force relaxation dynamics, and time-dependent mechanics of active materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35650960</pmid><doi>10.1021/acsmacrolett.8b00498</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4475-4667</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2161-1653
ispartof ACS macro letters, 2018-08, Vol.7 (8), p.968-975
issn 2161-1653
2161-1653
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9163451
source ACS Publications
title Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Tweezers%20Microrheology:%20From%20the%20Basics%20to%20Advanced%20Techniques%20and%20Applications&rft.jtitle=ACS%20macro%20letters&rft.au=Robertson-Anderson,%20Rae%20M&rft.date=2018-08-21&rft.volume=7&rft.issue=8&rft.spage=968&rft.epage=975&rft.pages=968-975&rft.issn=2161-1653&rft.eissn=2161-1653&rft_id=info:doi/10.1021/acsmacrolett.8b00498&rft_dat=%3Cproquest_pubme%3E2672705559%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672705559&rft_id=info:pmid/35650960&rfr_iscdi=true