Pulmonary Nodule Clinical Trial Data Collection and Intelligent Differential Diagnosis for Medical Internet of Things

In this paper, the medical Internet of things (IoT) is used to pool data from clinical trials of pulmonary nodules, and on this basis, intelligent differential diagnosis techniques are investigated. A filtered orthogonal frequency division multiplexing model based on polarisation coding is proposed,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contrast media and molecular imaging 2022, Vol.2022 (1), p.2058284-2058284
Hauptverfasser: Wu, Weijia, Gu, Lizhong, Zhang, Yuefeng, Huang, Xianping, Zhou, Weihe
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2058284
container_issue 1
container_start_page 2058284
container_title Contrast media and molecular imaging
container_volume 2022
creator Wu, Weijia
Gu, Lizhong
Zhang, Yuefeng
Huang, Xianping
Zhou, Weihe
description In this paper, the medical Internet of things (IoT) is used to pool data from clinical trials of pulmonary nodules, and on this basis, intelligent differential diagnosis techniques are investigated. A filtered orthogonal frequency division multiplexing model based on polarisation coding is proposed, where the input data are fed to a modulator after polarisation cascade coding, and the system performance is analysed under a medical Internet of things modulated additive Gaussian white noise channel. The above polarisation-coded filtered orthogonal frequency division multiplexing system components are applied to electroencephalogram (EEG) signal transmission, to which a threshold compression module and a vector reconstruction module are added to address the system power burden associated with the acquisition and transmission of large amounts of real-time EEG data in the medical IoT. In the threshold compression module, the inherent characteristics of EEG signals are analysed, and the generated EEG data are decomposed into multiple symbolic streams and compressed by applying different thresholds to improve the compression ratio while ensuring the quality of service of the application. A deep neural network-based approach is proposed for the detection and diagnosis of lung nodules. Automatic identification and measurement of simulated lung nodules and the corresponding volumes of nodules in images under different conditions are applied. The sensitivity of each AIADS in identifying lung nodules under different convolution kernel conditions, false positives (FP), false negatives (FN), relative volume errors (RVE), the miss detection rate (MDR) for different types of lung nodules, and the performance of each system in predicting the four types of nodules are calculated. In this paper, an interpretable multibranch feature convolutional neural network model is proposed for the diagnosis of benign and malignant lung nodules. It is demonstrated that the proposed model not only yields interpretable lung nodule classification results but also achieves better lung nodule classification performance with an accuracy rate of 97.8%.
doi_str_mv 10.1155/2022/2058284
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9162868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675606043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-623a5dff107d8a1b34d0d6be589ab91018e03d73b7be8f4e2de70870332d226c3</originalsourceid><addsrcrecordid>eNp9kctvEzEQxi1ERR9w44x8RKIBP9aPvSBVaQuVyuMQzpZ3PU6NHLvYuyD--zpNiODCZWbk-embGX8IvaTkLaVCvGOEsRaEZrp7gk7ak1h0nKqnh5r0x-i01u-EdB3v-TN0zIXUQqruBM1f57jJyZbf-HN2cwS8jCGF0Ua8KqHFSztZvMwxwjiFnLBNDt-kCWIMa0gTvgzeQ2nVIxzsOuUaKva54E_gHoW2eEkw4ezx6i6kdX2OjryNFV7s8xn6dn21Wn5c3H75cLO8uF2MXKlpIRm3wnlPiXLa0oF3jjg5gNC9HXpKqAbCneKDGkD7DpgDRbQinDPHmBz5GXq_072fhw24sa1ZbDT3JWzaxSbbYP7tpHBn1vmn6alkWuom8HovUPKPGepkNqGO7XibIM_VMKmEJJJ0vKHnO3QsudYC_jCGErN1ymydMnunGv7q79UO8B9rGvBmB7Qfc_ZX-L_cA9t0nUY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675606043</pqid></control><display><type>article</type><title>Pulmonary Nodule Clinical Trial Data Collection and Intelligent Differential Diagnosis for Medical Internet of Things</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Wu, Weijia ; Gu, Lizhong ; Zhang, Yuefeng ; Huang, Xianping ; Zhou, Weihe</creator><contributor>Hashmi, Mohammad Farukh</contributor><creatorcontrib>Wu, Weijia ; Gu, Lizhong ; Zhang, Yuefeng ; Huang, Xianping ; Zhou, Weihe ; Hashmi, Mohammad Farukh</creatorcontrib><description>In this paper, the medical Internet of things (IoT) is used to pool data from clinical trials of pulmonary nodules, and on this basis, intelligent differential diagnosis techniques are investigated. A filtered orthogonal frequency division multiplexing model based on polarisation coding is proposed, where the input data are fed to a modulator after polarisation cascade coding, and the system performance is analysed under a medical Internet of things modulated additive Gaussian white noise channel. The above polarisation-coded filtered orthogonal frequency division multiplexing system components are applied to electroencephalogram (EEG) signal transmission, to which a threshold compression module and a vector reconstruction module are added to address the system power burden associated with the acquisition and transmission of large amounts of real-time EEG data in the medical IoT. In the threshold compression module, the inherent characteristics of EEG signals are analysed, and the generated EEG data are decomposed into multiple symbolic streams and compressed by applying different thresholds to improve the compression ratio while ensuring the quality of service of the application. A deep neural network-based approach is proposed for the detection and diagnosis of lung nodules. Automatic identification and measurement of simulated lung nodules and the corresponding volumes of nodules in images under different conditions are applied. The sensitivity of each AIADS in identifying lung nodules under different convolution kernel conditions, false positives (FP), false negatives (FN), relative volume errors (RVE), the miss detection rate (MDR) for different types of lung nodules, and the performance of each system in predicting the four types of nodules are calculated. In this paper, an interpretable multibranch feature convolutional neural network model is proposed for the diagnosis of benign and malignant lung nodules. It is demonstrated that the proposed model not only yields interpretable lung nodule classification results but also achieves better lung nodule classification performance with an accuracy rate of 97.8%.</description><identifier>ISSN: 1555-4309</identifier><identifier>EISSN: 1555-4317</identifier><identifier>DOI: 10.1155/2022/2058284</identifier><identifier>PMID: 35685674</identifier><language>eng</language><publisher>England: Hindawi</publisher><ispartof>Contrast media and molecular imaging, 2022, Vol.2022 (1), p.2058284-2058284</ispartof><rights>Copyright © 2022 Weijia Wu et al.</rights><rights>Copyright © 2022 Weijia Wu et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c377t-623a5dff107d8a1b34d0d6be589ab91018e03d73b7be8f4e2de70870332d226c3</cites><orcidid>0000-0003-2293-1335 ; 0000-0002-6453-7806 ; 0000-0002-9481-1562 ; 0000-0002-5725-9393 ; 0000-0002-9311-1062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162868/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162868/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,27900,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35685674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hashmi, Mohammad Farukh</contributor><creatorcontrib>Wu, Weijia</creatorcontrib><creatorcontrib>Gu, Lizhong</creatorcontrib><creatorcontrib>Zhang, Yuefeng</creatorcontrib><creatorcontrib>Huang, Xianping</creatorcontrib><creatorcontrib>Zhou, Weihe</creatorcontrib><title>Pulmonary Nodule Clinical Trial Data Collection and Intelligent Differential Diagnosis for Medical Internet of Things</title><title>Contrast media and molecular imaging</title><addtitle>Contrast Media Mol Imaging</addtitle><description>In this paper, the medical Internet of things (IoT) is used to pool data from clinical trials of pulmonary nodules, and on this basis, intelligent differential diagnosis techniques are investigated. A filtered orthogonal frequency division multiplexing model based on polarisation coding is proposed, where the input data are fed to a modulator after polarisation cascade coding, and the system performance is analysed under a medical Internet of things modulated additive Gaussian white noise channel. The above polarisation-coded filtered orthogonal frequency division multiplexing system components are applied to electroencephalogram (EEG) signal transmission, to which a threshold compression module and a vector reconstruction module are added to address the system power burden associated with the acquisition and transmission of large amounts of real-time EEG data in the medical IoT. In the threshold compression module, the inherent characteristics of EEG signals are analysed, and the generated EEG data are decomposed into multiple symbolic streams and compressed by applying different thresholds to improve the compression ratio while ensuring the quality of service of the application. A deep neural network-based approach is proposed for the detection and diagnosis of lung nodules. Automatic identification and measurement of simulated lung nodules and the corresponding volumes of nodules in images under different conditions are applied. The sensitivity of each AIADS in identifying lung nodules under different convolution kernel conditions, false positives (FP), false negatives (FN), relative volume errors (RVE), the miss detection rate (MDR) for different types of lung nodules, and the performance of each system in predicting the four types of nodules are calculated. In this paper, an interpretable multibranch feature convolutional neural network model is proposed for the diagnosis of benign and malignant lung nodules. It is demonstrated that the proposed model not only yields interpretable lung nodule classification results but also achieves better lung nodule classification performance with an accuracy rate of 97.8%.</description><issn>1555-4309</issn><issn>1555-4317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kctvEzEQxi1ERR9w44x8RKIBP9aPvSBVaQuVyuMQzpZ3PU6NHLvYuyD--zpNiODCZWbk-embGX8IvaTkLaVCvGOEsRaEZrp7gk7ak1h0nKqnh5r0x-i01u-EdB3v-TN0zIXUQqruBM1f57jJyZbf-HN2cwS8jCGF0Ua8KqHFSztZvMwxwjiFnLBNDt-kCWIMa0gTvgzeQ2nVIxzsOuUaKva54E_gHoW2eEkw4ezx6i6kdX2OjryNFV7s8xn6dn21Wn5c3H75cLO8uF2MXKlpIRm3wnlPiXLa0oF3jjg5gNC9HXpKqAbCneKDGkD7DpgDRbQinDPHmBz5GXq_072fhw24sa1ZbDT3JWzaxSbbYP7tpHBn1vmn6alkWuom8HovUPKPGepkNqGO7XibIM_VMKmEJJJ0vKHnO3QsudYC_jCGErN1ymydMnunGv7q79UO8B9rGvBmB7Qfc_ZX-L_cA9t0nUY</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wu, Weijia</creator><creator>Gu, Lizhong</creator><creator>Zhang, Yuefeng</creator><creator>Huang, Xianping</creator><creator>Zhou, Weihe</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2293-1335</orcidid><orcidid>https://orcid.org/0000-0002-6453-7806</orcidid><orcidid>https://orcid.org/0000-0002-9481-1562</orcidid><orcidid>https://orcid.org/0000-0002-5725-9393</orcidid><orcidid>https://orcid.org/0000-0002-9311-1062</orcidid></search><sort><creationdate>2022</creationdate><title>Pulmonary Nodule Clinical Trial Data Collection and Intelligent Differential Diagnosis for Medical Internet of Things</title><author>Wu, Weijia ; Gu, Lizhong ; Zhang, Yuefeng ; Huang, Xianping ; Zhou, Weihe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-623a5dff107d8a1b34d0d6be589ab91018e03d73b7be8f4e2de70870332d226c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Weijia</creatorcontrib><creatorcontrib>Gu, Lizhong</creatorcontrib><creatorcontrib>Zhang, Yuefeng</creatorcontrib><creatorcontrib>Huang, Xianping</creatorcontrib><creatorcontrib>Zhou, Weihe</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Contrast media and molecular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Weijia</au><au>Gu, Lizhong</au><au>Zhang, Yuefeng</au><au>Huang, Xianping</au><au>Zhou, Weihe</au><au>Hashmi, Mohammad Farukh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulmonary Nodule Clinical Trial Data Collection and Intelligent Differential Diagnosis for Medical Internet of Things</atitle><jtitle>Contrast media and molecular imaging</jtitle><addtitle>Contrast Media Mol Imaging</addtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><issue>1</issue><spage>2058284</spage><epage>2058284</epage><pages>2058284-2058284</pages><issn>1555-4309</issn><eissn>1555-4317</eissn><abstract>In this paper, the medical Internet of things (IoT) is used to pool data from clinical trials of pulmonary nodules, and on this basis, intelligent differential diagnosis techniques are investigated. A filtered orthogonal frequency division multiplexing model based on polarisation coding is proposed, where the input data are fed to a modulator after polarisation cascade coding, and the system performance is analysed under a medical Internet of things modulated additive Gaussian white noise channel. The above polarisation-coded filtered orthogonal frequency division multiplexing system components are applied to electroencephalogram (EEG) signal transmission, to which a threshold compression module and a vector reconstruction module are added to address the system power burden associated with the acquisition and transmission of large amounts of real-time EEG data in the medical IoT. In the threshold compression module, the inherent characteristics of EEG signals are analysed, and the generated EEG data are decomposed into multiple symbolic streams and compressed by applying different thresholds to improve the compression ratio while ensuring the quality of service of the application. A deep neural network-based approach is proposed for the detection and diagnosis of lung nodules. Automatic identification and measurement of simulated lung nodules and the corresponding volumes of nodules in images under different conditions are applied. The sensitivity of each AIADS in identifying lung nodules under different convolution kernel conditions, false positives (FP), false negatives (FN), relative volume errors (RVE), the miss detection rate (MDR) for different types of lung nodules, and the performance of each system in predicting the four types of nodules are calculated. In this paper, an interpretable multibranch feature convolutional neural network model is proposed for the diagnosis of benign and malignant lung nodules. It is demonstrated that the proposed model not only yields interpretable lung nodule classification results but also achieves better lung nodule classification performance with an accuracy rate of 97.8%.</abstract><cop>England</cop><pub>Hindawi</pub><pmid>35685674</pmid><doi>10.1155/2022/2058284</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2293-1335</orcidid><orcidid>https://orcid.org/0000-0002-6453-7806</orcidid><orcidid>https://orcid.org/0000-0002-9481-1562</orcidid><orcidid>https://orcid.org/0000-0002-5725-9393</orcidid><orcidid>https://orcid.org/0000-0002-9311-1062</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1555-4309
ispartof Contrast media and molecular imaging, 2022, Vol.2022 (1), p.2058284-2058284
issn 1555-4309
1555-4317
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9162868
source PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library; PubMed Central Open Access
title Pulmonary Nodule Clinical Trial Data Collection and Intelligent Differential Diagnosis for Medical Internet of Things
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulmonary%20Nodule%20Clinical%20Trial%20Data%20Collection%20and%20Intelligent%20Differential%20Diagnosis%20for%20Medical%20Internet%20of%20Things&rft.jtitle=Contrast%20media%20and%20molecular%20imaging&rft.au=Wu,%20Weijia&rft.date=2022&rft.volume=2022&rft.issue=1&rft.spage=2058284&rft.epage=2058284&rft.pages=2058284-2058284&rft.issn=1555-4309&rft.eissn=1555-4317&rft_id=info:doi/10.1155/2022/2058284&rft_dat=%3Cproquest_pubme%3E2675606043%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675606043&rft_id=info:pmid/35685674&rfr_iscdi=true