Methods for Facial Expression Recognition with Applications in Challenging Situations
In the last few years, a great deal of interesting research has been achieved on automatic facial emotion recognition (FER). FER has been used in a number of ways to make human-machine interactions better, including human center computing and the new trends of emotional artificial intelligence (EAI)...
Gespeichert in:
Veröffentlicht in: | Computational intelligence and neuroscience 2022-05, Vol.2022, p.9261438-17 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 9261438 |
container_title | Computational intelligence and neuroscience |
container_volume | 2022 |
creator | Pise, Anil Audumbar Alqahtani, Mejdal A. Verma, Priti K, Purushothama Karras, Dimitrios A. S, Prathibha Halifa, Awal |
description | In the last few years, a great deal of interesting research has been achieved on automatic facial emotion recognition (FER). FER has been used in a number of ways to make human-machine interactions better, including human center computing and the new trends of emotional artificial intelligence (EAI). Researchers in the EAI field aim to make computers better at predicting and analyzing the facial expressions and behavior of human under different scenarios and cases. Deep learning has had the greatest influence on such a field since neural networks have evolved significantly in recent years, and accordingly, different architectures are being developed to solve more and more difficult problems. This article will address the latest advances in computational intelligence-related automated emotion recognition using recent deep learning models. We show that both deep learning-based FER and models that use architecture-related methods, such as databases, can collaborate well in delivering highly accurate results. |
doi_str_mv | 10.1155/2022/9261438 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9159845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A706121323</galeid><sourcerecordid>A706121323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-71fb38dc1de41ac963767c615d41fa473d9ba4386c539a32b1334f061ffb288c3</originalsourceid><addsrcrecordid>eNp9kc9rFDEUx4MotlZvnmXAi2DX5ndmLsKy9IfQIqg9h0wmmUnJJmMyY_W_N8OuW-vBUx55Hz7vPb4AvEbwA0KMnWGI8VmDOaKkfgKOEa_FimFBnh5qzo7Ai5zvIGSCQfwcHBHGOcM1OQa3N2YaYpcrG1N1obRTvjr_OSaTs4uh-mJ07IOblvreTUO1HkfvtFo-cuVCtRmU9yb0LvTVVzfNu85L8Mwqn82r_XsCbi_Ov22uVtefLz9t1tcrTSGfVgLZltSdRp2hSOmGE8GF5oh1FFlFBemaVpWzuGakUQS3iBBqIUfWtriuNTkBH3fecW63ptMmTEl5OSa3VemXjMrJx53gBtnHH7JBrKkpK4J3e0GK32eTJ7l1WRvvVTBxzhJzQSGkAqOCvv0HvYtzCuW8hSIYCwGbB6pX3kgXbCxz9SKVa1E2LyJMCnW6o3SKOSdjDysjKJdU5ZKq3Kda8Dd_n3mA_8RYgPc7YHChU_fu_7rfJs6pFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673227709</pqid></control><display><type>article</type><title>Methods for Facial Expression Recognition with Applications in Challenging Situations</title><source>Wiley-Blackwell Open Access Titles</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Pise, Anil Audumbar ; Alqahtani, Mejdal A. ; Verma, Priti ; K, Purushothama ; Karras, Dimitrios A. ; S, Prathibha ; Halifa, Awal</creator><contributor>Kumar, Vijay</contributor><creatorcontrib>Pise, Anil Audumbar ; Alqahtani, Mejdal A. ; Verma, Priti ; K, Purushothama ; Karras, Dimitrios A. ; S, Prathibha ; Halifa, Awal ; Kumar, Vijay</creatorcontrib><description>In the last few years, a great deal of interesting research has been achieved on automatic facial emotion recognition (FER). FER has been used in a number of ways to make human-machine interactions better, including human center computing and the new trends of emotional artificial intelligence (EAI). Researchers in the EAI field aim to make computers better at predicting and analyzing the facial expressions and behavior of human under different scenarios and cases. Deep learning has had the greatest influence on such a field since neural networks have evolved significantly in recent years, and accordingly, different architectures are being developed to solve more and more difficult problems. This article will address the latest advances in computational intelligence-related automated emotion recognition using recent deep learning models. We show that both deep learning-based FER and models that use architecture-related methods, such as databases, can collaborate well in delivering highly accurate results.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2022/9261438</identifier><identifier>PMID: 35665283</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Artificial intelligence ; Computer applications ; Computers ; Deep learning ; Emotion recognition ; Emotions ; Face recognition ; Forecasts and trends ; Human acts ; Human behavior ; Machine learning ; Methods ; Neural networks ; Pattern recognition</subject><ispartof>Computational intelligence and neuroscience, 2022-05, Vol.2022, p.9261438-17</ispartof><rights>Copyright © 2022 Anil Audumbar Pise et al.</rights><rights>COPYRIGHT 2022 John Wiley & Sons, Inc.</rights><rights>Copyright © 2022 Anil Audumbar Pise et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Anil Audumbar Pise et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-71fb38dc1de41ac963767c615d41fa473d9ba4386c539a32b1334f061ffb288c3</citedby><cites>FETCH-LOGICAL-c406t-71fb38dc1de41ac963767c615d41fa473d9ba4386c539a32b1334f061ffb288c3</cites><orcidid>0000-0003-3262-8700 ; 0000-0002-2402-087X ; 0000-0002-6069-6404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159845/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159845/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35665283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kumar, Vijay</contributor><creatorcontrib>Pise, Anil Audumbar</creatorcontrib><creatorcontrib>Alqahtani, Mejdal A.</creatorcontrib><creatorcontrib>Verma, Priti</creatorcontrib><creatorcontrib>K, Purushothama</creatorcontrib><creatorcontrib>Karras, Dimitrios A.</creatorcontrib><creatorcontrib>S, Prathibha</creatorcontrib><creatorcontrib>Halifa, Awal</creatorcontrib><title>Methods for Facial Expression Recognition with Applications in Challenging Situations</title><title>Computational intelligence and neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>In the last few years, a great deal of interesting research has been achieved on automatic facial emotion recognition (FER). FER has been used in a number of ways to make human-machine interactions better, including human center computing and the new trends of emotional artificial intelligence (EAI). Researchers in the EAI field aim to make computers better at predicting and analyzing the facial expressions and behavior of human under different scenarios and cases. Deep learning has had the greatest influence on such a field since neural networks have evolved significantly in recent years, and accordingly, different architectures are being developed to solve more and more difficult problems. This article will address the latest advances in computational intelligence-related automated emotion recognition using recent deep learning models. We show that both deep learning-based FER and models that use architecture-related methods, such as databases, can collaborate well in delivering highly accurate results.</description><subject>Artificial intelligence</subject><subject>Computer applications</subject><subject>Computers</subject><subject>Deep learning</subject><subject>Emotion recognition</subject><subject>Emotions</subject><subject>Face recognition</subject><subject>Forecasts and trends</subject><subject>Human acts</subject><subject>Human behavior</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc9rFDEUx4MotlZvnmXAi2DX5ndmLsKy9IfQIqg9h0wmmUnJJmMyY_W_N8OuW-vBUx55Hz7vPb4AvEbwA0KMnWGI8VmDOaKkfgKOEa_FimFBnh5qzo7Ai5zvIGSCQfwcHBHGOcM1OQa3N2YaYpcrG1N1obRTvjr_OSaTs4uh-mJ07IOblvreTUO1HkfvtFo-cuVCtRmU9yb0LvTVVzfNu85L8Mwqn82r_XsCbi_Ov22uVtefLz9t1tcrTSGfVgLZltSdRp2hSOmGE8GF5oh1FFlFBemaVpWzuGakUQS3iBBqIUfWtriuNTkBH3fecW63ptMmTEl5OSa3VemXjMrJx53gBtnHH7JBrKkpK4J3e0GK32eTJ7l1WRvvVTBxzhJzQSGkAqOCvv0HvYtzCuW8hSIYCwGbB6pX3kgXbCxz9SKVa1E2LyJMCnW6o3SKOSdjDysjKJdU5ZKq3Kda8Dd_n3mA_8RYgPc7YHChU_fu_7rfJs6pFg</recordid><startdate>20220525</startdate><enddate>20220525</enddate><creator>Pise, Anil Audumbar</creator><creator>Alqahtani, Mejdal A.</creator><creator>Verma, Priti</creator><creator>K, Purushothama</creator><creator>Karras, Dimitrios A.</creator><creator>S, Prathibha</creator><creator>Halifa, Awal</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3262-8700</orcidid><orcidid>https://orcid.org/0000-0002-2402-087X</orcidid><orcidid>https://orcid.org/0000-0002-6069-6404</orcidid></search><sort><creationdate>20220525</creationdate><title>Methods for Facial Expression Recognition with Applications in Challenging Situations</title><author>Pise, Anil Audumbar ; Alqahtani, Mejdal A. ; Verma, Priti ; K, Purushothama ; Karras, Dimitrios A. ; S, Prathibha ; Halifa, Awal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-71fb38dc1de41ac963767c615d41fa473d9ba4386c539a32b1334f061ffb288c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Computer applications</topic><topic>Computers</topic><topic>Deep learning</topic><topic>Emotion recognition</topic><topic>Emotions</topic><topic>Face recognition</topic><topic>Forecasts and trends</topic><topic>Human acts</topic><topic>Human behavior</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pise, Anil Audumbar</creatorcontrib><creatorcontrib>Alqahtani, Mejdal A.</creatorcontrib><creatorcontrib>Verma, Priti</creatorcontrib><creatorcontrib>K, Purushothama</creatorcontrib><creatorcontrib>Karras, Dimitrios A.</creatorcontrib><creatorcontrib>S, Prathibha</creatorcontrib><creatorcontrib>Halifa, Awal</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pise, Anil Audumbar</au><au>Alqahtani, Mejdal A.</au><au>Verma, Priti</au><au>K, Purushothama</au><au>Karras, Dimitrios A.</au><au>S, Prathibha</au><au>Halifa, Awal</au><au>Kumar, Vijay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methods for Facial Expression Recognition with Applications in Challenging Situations</atitle><jtitle>Computational intelligence and neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2022-05-25</date><risdate>2022</risdate><volume>2022</volume><spage>9261438</spage><epage>17</epage><pages>9261438-17</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>In the last few years, a great deal of interesting research has been achieved on automatic facial emotion recognition (FER). FER has been used in a number of ways to make human-machine interactions better, including human center computing and the new trends of emotional artificial intelligence (EAI). Researchers in the EAI field aim to make computers better at predicting and analyzing the facial expressions and behavior of human under different scenarios and cases. Deep learning has had the greatest influence on such a field since neural networks have evolved significantly in recent years, and accordingly, different architectures are being developed to solve more and more difficult problems. This article will address the latest advances in computational intelligence-related automated emotion recognition using recent deep learning models. We show that both deep learning-based FER and models that use architecture-related methods, such as databases, can collaborate well in delivering highly accurate results.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>35665283</pmid><doi>10.1155/2022/9261438</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3262-8700</orcidid><orcidid>https://orcid.org/0000-0002-2402-087X</orcidid><orcidid>https://orcid.org/0000-0002-6069-6404</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5265 |
ispartof | Computational intelligence and neuroscience, 2022-05, Vol.2022, p.9261438-17 |
issn | 1687-5265 1687-5273 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9159845 |
source | Wiley-Blackwell Open Access Titles; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Artificial intelligence Computer applications Computers Deep learning Emotion recognition Emotions Face recognition Forecasts and trends Human acts Human behavior Machine learning Methods Neural networks Pattern recognition |
title | Methods for Facial Expression Recognition with Applications in Challenging Situations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methods%20for%20Facial%20Expression%20Recognition%20with%20Applications%20in%20Challenging%20Situations&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Pise,%20Anil%20Audumbar&rft.date=2022-05-25&rft.volume=2022&rft.spage=9261438&rft.epage=17&rft.pages=9261438-17&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2022/9261438&rft_dat=%3Cgale_pubme%3EA706121323%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673227709&rft_id=info:pmid/35665283&rft_galeid=A706121323&rfr_iscdi=true |