Iron deficiency and high-intensity running interval training do not impact femoral or tibial bone in young female rats

In the USA, as many as 20 % of recruits sustain stress fractures during basic training. In addition, approximately one-third of female recruits develop Fe deficiency upon completion of training. Fe is a cofactor in bone collagen formation and vitamin D activation, thus we hypothesised Fe deficiency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of nutrition 2022-10, Vol.128 (8), p.1518-1525
Hauptverfasser: Scott, Jonathan M., Swallow, Elizabeth A., Metzger, Corinne E., Kohler, Rachel, Wallace, Joseph M., Stacy, Alexander J., Allen, Matthew R., Gasier, Heath G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1525
container_issue 8
container_start_page 1518
container_title British journal of nutrition
container_volume 128
creator Scott, Jonathan M.
Swallow, Elizabeth A.
Metzger, Corinne E.
Kohler, Rachel
Wallace, Joseph M.
Stacy, Alexander J.
Allen, Matthew R.
Gasier, Heath G.
description In the USA, as many as 20 % of recruits sustain stress fractures during basic training. In addition, approximately one-third of female recruits develop Fe deficiency upon completion of training. Fe is a cofactor in bone collagen formation and vitamin D activation, thus we hypothesised Fe deficiency may be contributing to altered bone microarchitecture and mechanics during 12-weeks of increased mechanical loading. Three-week old female Sprague Dawley rats were assigned to one of four groups: Fe-adequate sedentary, Fe-deficient sedentary, Fe-adequate exercise and Fe-deficient exercise. Exercise consisted of high-intensity treadmill running (54 min 3×/week). After 12-weeks, serum bone turnover markers, femoral geometry and microarchitecture, mechanical properties and fracture toughness and tibiae mineral composition and morphometry were measured. Fe deficiency increased the bone resorption markers C-terminal telopeptide type I collagen and tartate-resistant acid phosphatase 5b (TRAcP 5b). In exercised rats, Fe deficiency further increased bone TRAcP 5b, while in Fe-adequate rats, exercise increased the bone formation marker procollagen type I N-terminal propeptide. In the femur, exercise increased cortical thickness and maximum load. In the tibia, Fe deficiency increased the rate of bone formation, mineral apposition and Zn content. These data show that the femur and tibia structure and mechanical properties are not negatively impacted by Fe deficiency despite a decrease in tibiae Fe content and increase in serum bone resorption markers during 12-weeks of high-intensity running in young growing female rats.
doi_str_mv 10.1017/S0007114521004426
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9150815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0007114521004426</cupid><sourcerecordid>2596454289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-9a8e4ab2b0d270ec1cb5466e569fc6493b3d65f413b28946efecb9f983c4b70b3</originalsourceid><addsrcrecordid>eNp1kU1v3CAQhlHVqNmm_QG9VEi99OIGMGBzqVRFaRMpUg5tzwjweJfIhi3glfbfh0226Zd6AuZ95p0ZBqE3lHyghHbnXwkhHaVcMEoI50w-QyvKO9EwKdlztDrIzUE_RS9zvqvPnhL1Ap22Fep7RVZod51iwAOM3nkIbo9NGPDGrzeNDwVC9mWP0xKCD2t8iKSdmXBJxj9EhohDLNjPW-MKHmGOqcox4eKtrzcbA9Q0vI9LpatuJsDJlPwKnYxmyvD6eJ6h758vv11cNTe3X64vPt00jrO-NMr0wI1llgysI-Cos4JLCUKq0UmuWtsOUoyctpb1iksYwVk1qr513HbEtmfo46PvdrEzDA5C7X3S2-Rnk_Y6Gq__VILf6HXcaUVF_SxRDd4fDVL8sUAuevbZwTSZAHHJmgkluajNqoq--wu9i0sKdTzNOtZ2jPYdrRR9pFyKOScYn5qhRB-2qv_Zas15-_sUTxk_11iB9mhqZpv8sIZftf9vew-2dq5l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723721871</pqid></control><display><type>article</type><title>Iron deficiency and high-intensity running interval training do not impact femoral or tibial bone in young female rats</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><source>Cambridge University Press Journals Complete</source><creator>Scott, Jonathan M. ; Swallow, Elizabeth A. ; Metzger, Corinne E. ; Kohler, Rachel ; Wallace, Joseph M. ; Stacy, Alexander J. ; Allen, Matthew R. ; Gasier, Heath G.</creator><creatorcontrib>Scott, Jonathan M. ; Swallow, Elizabeth A. ; Metzger, Corinne E. ; Kohler, Rachel ; Wallace, Joseph M. ; Stacy, Alexander J. ; Allen, Matthew R. ; Gasier, Heath G.</creatorcontrib><description>In the USA, as many as 20 % of recruits sustain stress fractures during basic training. In addition, approximately one-third of female recruits develop Fe deficiency upon completion of training. Fe is a cofactor in bone collagen formation and vitamin D activation, thus we hypothesised Fe deficiency may be contributing to altered bone microarchitecture and mechanics during 12-weeks of increased mechanical loading. Three-week old female Sprague Dawley rats were assigned to one of four groups: Fe-adequate sedentary, Fe-deficient sedentary, Fe-adequate exercise and Fe-deficient exercise. Exercise consisted of high-intensity treadmill running (54 min 3×/week). After 12-weeks, serum bone turnover markers, femoral geometry and microarchitecture, mechanical properties and fracture toughness and tibiae mineral composition and morphometry were measured. Fe deficiency increased the bone resorption markers C-terminal telopeptide type I collagen and tartate-resistant acid phosphatase 5b (TRAcP 5b). In exercised rats, Fe deficiency further increased bone TRAcP 5b, while in Fe-adequate rats, exercise increased the bone formation marker procollagen type I N-terminal propeptide. In the femur, exercise increased cortical thickness and maximum load. In the tibia, Fe deficiency increased the rate of bone formation, mineral apposition and Zn content. These data show that the femur and tibia structure and mechanical properties are not negatively impacted by Fe deficiency despite a decrease in tibiae Fe content and increase in serum bone resorption markers during 12-weeks of high-intensity running in young growing female rats.</description><identifier>ISSN: 0007-1145</identifier><identifier>EISSN: 1475-2662</identifier><identifier>DOI: 10.1017/S0007114521004426</identifier><identifier>PMID: 34758890</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Acid phosphatase ; Acid resistance ; Anemia ; Animals ; Apposition ; Bone composition ; Bone Density ; Bone growth ; Bone Resorption ; Bone turnover ; Collagen ; Collagen (type I) ; Computer architecture ; Developmental Biology ; Exercise ; Female ; Females ; Femur ; Fitness equipment ; Fracture toughness ; Fractures ; Iron ; Iron Deficiencies ; Iron deficiency ; Laboratory animals ; Load distribution ; Markers ; Mechanical loading ; Mechanical properties ; Mineral composition ; Morphometry ; Nutrient deficiency ; Nutrition research ; Osteogenesis ; Physical fitness ; Physical training ; Procollagen ; Rats ; Rats, Sprague-Dawley ; Rodents ; Running ; Sedentary behavior ; Tartrate-Resistant Acid Phosphatase ; Tibia ; Tomography ; Training ; Treadmills ; Vitamin D</subject><ispartof>British journal of nutrition, 2022-10, Vol.128 (8), p.1518-1525</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-9a8e4ab2b0d270ec1cb5466e569fc6493b3d65f413b28946efecb9f983c4b70b3</citedby><cites>FETCH-LOGICAL-c428t-9a8e4ab2b0d270ec1cb5466e569fc6493b3d65f413b28946efecb9f983c4b70b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0007114521004426/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,315,781,785,886,27929,27930,55633</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34758890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scott, Jonathan M.</creatorcontrib><creatorcontrib>Swallow, Elizabeth A.</creatorcontrib><creatorcontrib>Metzger, Corinne E.</creatorcontrib><creatorcontrib>Kohler, Rachel</creatorcontrib><creatorcontrib>Wallace, Joseph M.</creatorcontrib><creatorcontrib>Stacy, Alexander J.</creatorcontrib><creatorcontrib>Allen, Matthew R.</creatorcontrib><creatorcontrib>Gasier, Heath G.</creatorcontrib><title>Iron deficiency and high-intensity running interval training do not impact femoral or tibial bone in young female rats</title><title>British journal of nutrition</title><addtitle>Br J Nutr</addtitle><description>In the USA, as many as 20 % of recruits sustain stress fractures during basic training. In addition, approximately one-third of female recruits develop Fe deficiency upon completion of training. Fe is a cofactor in bone collagen formation and vitamin D activation, thus we hypothesised Fe deficiency may be contributing to altered bone microarchitecture and mechanics during 12-weeks of increased mechanical loading. Three-week old female Sprague Dawley rats were assigned to one of four groups: Fe-adequate sedentary, Fe-deficient sedentary, Fe-adequate exercise and Fe-deficient exercise. Exercise consisted of high-intensity treadmill running (54 min 3×/week). After 12-weeks, serum bone turnover markers, femoral geometry and microarchitecture, mechanical properties and fracture toughness and tibiae mineral composition and morphometry were measured. Fe deficiency increased the bone resorption markers C-terminal telopeptide type I collagen and tartate-resistant acid phosphatase 5b (TRAcP 5b). In exercised rats, Fe deficiency further increased bone TRAcP 5b, while in Fe-adequate rats, exercise increased the bone formation marker procollagen type I N-terminal propeptide. In the femur, exercise increased cortical thickness and maximum load. In the tibia, Fe deficiency increased the rate of bone formation, mineral apposition and Zn content. These data show that the femur and tibia structure and mechanical properties are not negatively impacted by Fe deficiency despite a decrease in tibiae Fe content and increase in serum bone resorption markers during 12-weeks of high-intensity running in young growing female rats.</description><subject>Acid phosphatase</subject><subject>Acid resistance</subject><subject>Anemia</subject><subject>Animals</subject><subject>Apposition</subject><subject>Bone composition</subject><subject>Bone Density</subject><subject>Bone growth</subject><subject>Bone Resorption</subject><subject>Bone turnover</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Computer architecture</subject><subject>Developmental Biology</subject><subject>Exercise</subject><subject>Female</subject><subject>Females</subject><subject>Femur</subject><subject>Fitness equipment</subject><subject>Fracture toughness</subject><subject>Fractures</subject><subject>Iron</subject><subject>Iron Deficiencies</subject><subject>Iron deficiency</subject><subject>Laboratory animals</subject><subject>Load distribution</subject><subject>Markers</subject><subject>Mechanical loading</subject><subject>Mechanical properties</subject><subject>Mineral composition</subject><subject>Morphometry</subject><subject>Nutrient deficiency</subject><subject>Nutrition research</subject><subject>Osteogenesis</subject><subject>Physical fitness</subject><subject>Physical training</subject><subject>Procollagen</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rodents</subject><subject>Running</subject><subject>Sedentary behavior</subject><subject>Tartrate-Resistant Acid Phosphatase</subject><subject>Tibia</subject><subject>Tomography</subject><subject>Training</subject><subject>Treadmills</subject><subject>Vitamin D</subject><issn>0007-1145</issn><issn>1475-2662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU1v3CAQhlHVqNmm_QG9VEi99OIGMGBzqVRFaRMpUg5tzwjweJfIhi3glfbfh0226Zd6AuZ95p0ZBqE3lHyghHbnXwkhHaVcMEoI50w-QyvKO9EwKdlztDrIzUE_RS9zvqvPnhL1Ap22Fep7RVZod51iwAOM3nkIbo9NGPDGrzeNDwVC9mWP0xKCD2t8iKSdmXBJxj9EhohDLNjPW-MKHmGOqcox4eKtrzcbA9Q0vI9LpatuJsDJlPwKnYxmyvD6eJ6h758vv11cNTe3X64vPt00jrO-NMr0wI1llgysI-Cos4JLCUKq0UmuWtsOUoyctpb1iksYwVk1qr513HbEtmfo46PvdrEzDA5C7X3S2-Rnk_Y6Gq__VILf6HXcaUVF_SxRDd4fDVL8sUAuevbZwTSZAHHJmgkluajNqoq--wu9i0sKdTzNOtZ2jPYdrRR9pFyKOScYn5qhRB-2qv_Zas15-_sUTxk_11iB9mhqZpv8sIZftf9vew-2dq5l</recordid><startdate>20221028</startdate><enddate>20221028</enddate><creator>Scott, Jonathan M.</creator><creator>Swallow, Elizabeth A.</creator><creator>Metzger, Corinne E.</creator><creator>Kohler, Rachel</creator><creator>Wallace, Joseph M.</creator><creator>Stacy, Alexander J.</creator><creator>Allen, Matthew R.</creator><creator>Gasier, Heath G.</creator><general>Cambridge University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7T5</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20221028</creationdate><title>Iron deficiency and high-intensity running interval training do not impact femoral or tibial bone in young female rats</title><author>Scott, Jonathan M. ; Swallow, Elizabeth A. ; Metzger, Corinne E. ; Kohler, Rachel ; Wallace, Joseph M. ; Stacy, Alexander J. ; Allen, Matthew R. ; Gasier, Heath G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-9a8e4ab2b0d270ec1cb5466e569fc6493b3d65f413b28946efecb9f983c4b70b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acid phosphatase</topic><topic>Acid resistance</topic><topic>Anemia</topic><topic>Animals</topic><topic>Apposition</topic><topic>Bone composition</topic><topic>Bone Density</topic><topic>Bone growth</topic><topic>Bone Resorption</topic><topic>Bone turnover</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Computer architecture</topic><topic>Developmental Biology</topic><topic>Exercise</topic><topic>Female</topic><topic>Females</topic><topic>Femur</topic><topic>Fitness equipment</topic><topic>Fracture toughness</topic><topic>Fractures</topic><topic>Iron</topic><topic>Iron Deficiencies</topic><topic>Iron deficiency</topic><topic>Laboratory animals</topic><topic>Load distribution</topic><topic>Markers</topic><topic>Mechanical loading</topic><topic>Mechanical properties</topic><topic>Mineral composition</topic><topic>Morphometry</topic><topic>Nutrient deficiency</topic><topic>Nutrition research</topic><topic>Osteogenesis</topic><topic>Physical fitness</topic><topic>Physical training</topic><topic>Procollagen</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rodents</topic><topic>Running</topic><topic>Sedentary behavior</topic><topic>Tartrate-Resistant Acid Phosphatase</topic><topic>Tibia</topic><topic>Tomography</topic><topic>Training</topic><topic>Treadmills</topic><topic>Vitamin D</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scott, Jonathan M.</creatorcontrib><creatorcontrib>Swallow, Elizabeth A.</creatorcontrib><creatorcontrib>Metzger, Corinne E.</creatorcontrib><creatorcontrib>Kohler, Rachel</creatorcontrib><creatorcontrib>Wallace, Joseph M.</creatorcontrib><creatorcontrib>Stacy, Alexander J.</creatorcontrib><creatorcontrib>Allen, Matthew R.</creatorcontrib><creatorcontrib>Gasier, Heath G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott, Jonathan M.</au><au>Swallow, Elizabeth A.</au><au>Metzger, Corinne E.</au><au>Kohler, Rachel</au><au>Wallace, Joseph M.</au><au>Stacy, Alexander J.</au><au>Allen, Matthew R.</au><au>Gasier, Heath G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron deficiency and high-intensity running interval training do not impact femoral or tibial bone in young female rats</atitle><jtitle>British journal of nutrition</jtitle><addtitle>Br J Nutr</addtitle><date>2022-10-28</date><risdate>2022</risdate><volume>128</volume><issue>8</issue><spage>1518</spage><epage>1525</epage><pages>1518-1525</pages><issn>0007-1145</issn><eissn>1475-2662</eissn><abstract>In the USA, as many as 20 % of recruits sustain stress fractures during basic training. In addition, approximately one-third of female recruits develop Fe deficiency upon completion of training. Fe is a cofactor in bone collagen formation and vitamin D activation, thus we hypothesised Fe deficiency may be contributing to altered bone microarchitecture and mechanics during 12-weeks of increased mechanical loading. Three-week old female Sprague Dawley rats were assigned to one of four groups: Fe-adequate sedentary, Fe-deficient sedentary, Fe-adequate exercise and Fe-deficient exercise. Exercise consisted of high-intensity treadmill running (54 min 3×/week). After 12-weeks, serum bone turnover markers, femoral geometry and microarchitecture, mechanical properties and fracture toughness and tibiae mineral composition and morphometry were measured. Fe deficiency increased the bone resorption markers C-terminal telopeptide type I collagen and tartate-resistant acid phosphatase 5b (TRAcP 5b). In exercised rats, Fe deficiency further increased bone TRAcP 5b, while in Fe-adequate rats, exercise increased the bone formation marker procollagen type I N-terminal propeptide. In the femur, exercise increased cortical thickness and maximum load. In the tibia, Fe deficiency increased the rate of bone formation, mineral apposition and Zn content. These data show that the femur and tibia structure and mechanical properties are not negatively impacted by Fe deficiency despite a decrease in tibiae Fe content and increase in serum bone resorption markers during 12-weeks of high-intensity running in young growing female rats.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>34758890</pmid><doi>10.1017/S0007114521004426</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0007-1145
ispartof British journal of nutrition, 2022-10, Vol.128 (8), p.1518-1525
issn 0007-1145
1475-2662
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9150815
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry; Cambridge University Press Journals Complete
subjects Acid phosphatase
Acid resistance
Anemia
Animals
Apposition
Bone composition
Bone Density
Bone growth
Bone Resorption
Bone turnover
Collagen
Collagen (type I)
Computer architecture
Developmental Biology
Exercise
Female
Females
Femur
Fitness equipment
Fracture toughness
Fractures
Iron
Iron Deficiencies
Iron deficiency
Laboratory animals
Load distribution
Markers
Mechanical loading
Mechanical properties
Mineral composition
Morphometry
Nutrient deficiency
Nutrition research
Osteogenesis
Physical fitness
Physical training
Procollagen
Rats
Rats, Sprague-Dawley
Rodents
Running
Sedentary behavior
Tartrate-Resistant Acid Phosphatase
Tibia
Tomography
Training
Treadmills
Vitamin D
title Iron deficiency and high-intensity running interval training do not impact femoral or tibial bone in young female rats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T23%3A54%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%20deficiency%20and%20high-intensity%20running%20interval%20training%20do%20not%20impact%20femoral%20or%20tibial%20bone%20in%20young%20female%20rats&rft.jtitle=British%20journal%20of%20nutrition&rft.au=Scott,%20Jonathan%20M.&rft.date=2022-10-28&rft.volume=128&rft.issue=8&rft.spage=1518&rft.epage=1525&rft.pages=1518-1525&rft.issn=0007-1145&rft.eissn=1475-2662&rft_id=info:doi/10.1017/S0007114521004426&rft_dat=%3Cproquest_pubme%3E2596454289%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723721871&rft_id=info:pmid/34758890&rft_cupid=10_1017_S0007114521004426&rfr_iscdi=true