MetaNetwork Enhances Biological Insights from Quantitative Proteomics Differences by Combining Clustering and Enrichment Analyses

Interpreting proteomics data remains challenging due to the large number of proteins that are quantified by modern mass spectrometry methods. Weighted gene correlation network analysis (WGCNA) can identify groups of biologically related proteins using only protein intensity values by constructing pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2022-02, Vol.21 (2), p.410-419
Hauptverfasser: Carr, Austin V, Frey, Brian L, Scalf, Mark, Cesnik, Anthony J, Rolfs, Zach, Pike, Kyndal A, Yang, Bing, Keller, Mark P, Jarrard, David F, Shortreed, Michael R, Smith, Lloyd M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 419
container_issue 2
container_start_page 410
container_title Journal of proteome research
container_volume 21
creator Carr, Austin V
Frey, Brian L
Scalf, Mark
Cesnik, Anthony J
Rolfs, Zach
Pike, Kyndal A
Yang, Bing
Keller, Mark P
Jarrard, David F
Shortreed, Michael R
Smith, Lloyd M
description Interpreting proteomics data remains challenging due to the large number of proteins that are quantified by modern mass spectrometry methods. Weighted gene correlation network analysis (WGCNA) can identify groups of biologically related proteins using only protein intensity values by constructing protein correlation networks. However, WGCNA is not widespread in proteomic analyses due to challenges in implementing workflows. To facilitate the adoption of WGCNA by the proteomics field, we created MetaNetwork, an open-source, R-based application to perform sophisticated WGCNA workflows with no coding skill requirements for the end user. We demonstrate MetaNetwork’s utility by employing it to identify groups of proteins associated with prostate cancer from a proteomic analysis of tumor and adjacent normal tissue samples. We found a decrease in cytoskeleton-related protein expression, a known hallmark of prostate tumors. We further identified changes in module eigenproteins indicative of dysregulation in protein translation and trafficking pathways. These results demonstrate the value of using MetaNetwork to improve the biological interpretation of quantitative proteomics experiments with 15 or more samples.
doi_str_mv 10.1021/acs.jproteome.1c00756
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9150505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622658919</sourcerecordid><originalsourceid>FETCH-LOGICAL-a453t-d46700769c0ec0cf74afbe1162c312eb94106759a08448fe288c130400c26bf33</originalsourceid><addsrcrecordid>eNqFUUtvEzEQthCIlsJPAPnIJel4vd5dX5BKaGml8pLgbHmdceKyawfb2ypH_jluk0ZwQj54pPkeM_MR8prBnEHFTrVJ85tNDBnDiHNmAFrRPCHHTHAx4xLap491J_kReZHSDQATLfDn5IgLaDnI7pj8_oRZf8Z8F-JPeu7X2htM9L0LQ1g5owd65ZNbrXOiNoaRfpu0zy7r7G6Rft25O5PoB2ctRnwg91u6CGPvvPMruhimlDHel9ovi0N0Zj2iz_TM62GbML0kz6weEr7a_yfkx8X598Xl7PrLx6vF2fVM14Ln2bJu2rJjIw2gAWPbWtseGWsqw1mFvawZNK2QGrq67ixWXWcYhxrAVE1vOT8h73a6m6kfcWnKDFEPahPdqONWBe3Uvx3v1moVbpVkAsorAm_3AjH8mjBlNbpkcBi0xzAlVTVV1YhOMlmgYgc1MaQU0R5sGKj7-FSJTx3iU_v4Cu_N3zMeWI95FQDbAR74YYrliOk_on8A43-u7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622658919</pqid></control><display><type>article</type><title>MetaNetwork Enhances Biological Insights from Quantitative Proteomics Differences by Combining Clustering and Enrichment Analyses</title><source>American Chemical Society</source><source>MEDLINE</source><creator>Carr, Austin V ; Frey, Brian L ; Scalf, Mark ; Cesnik, Anthony J ; Rolfs, Zach ; Pike, Kyndal A ; Yang, Bing ; Keller, Mark P ; Jarrard, David F ; Shortreed, Michael R ; Smith, Lloyd M</creator><creatorcontrib>Carr, Austin V ; Frey, Brian L ; Scalf, Mark ; Cesnik, Anthony J ; Rolfs, Zach ; Pike, Kyndal A ; Yang, Bing ; Keller, Mark P ; Jarrard, David F ; Shortreed, Michael R ; Smith, Lloyd M</creatorcontrib><description>Interpreting proteomics data remains challenging due to the large number of proteins that are quantified by modern mass spectrometry methods. Weighted gene correlation network analysis (WGCNA) can identify groups of biologically related proteins using only protein intensity values by constructing protein correlation networks. However, WGCNA is not widespread in proteomic analyses due to challenges in implementing workflows. To facilitate the adoption of WGCNA by the proteomics field, we created MetaNetwork, an open-source, R-based application to perform sophisticated WGCNA workflows with no coding skill requirements for the end user. We demonstrate MetaNetwork’s utility by employing it to identify groups of proteins associated with prostate cancer from a proteomic analysis of tumor and adjacent normal tissue samples. We found a decrease in cytoskeleton-related protein expression, a known hallmark of prostate tumors. We further identified changes in module eigenproteins indicative of dysregulation in protein translation and trafficking pathways. These results demonstrate the value of using MetaNetwork to improve the biological interpretation of quantitative proteomics experiments with 15 or more samples.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.1c00756</identifier><identifier>PMID: 35073098</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cluster Analysis ; Humans ; Male ; Mass Spectrometry ; Proteins ; Proteomics ; Workflow</subject><ispartof>Journal of proteome research, 2022-02, Vol.21 (2), p.410-419</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a453t-d46700769c0ec0cf74afbe1162c312eb94106759a08448fe288c130400c26bf33</citedby><cites>FETCH-LOGICAL-a453t-d46700769c0ec0cf74afbe1162c312eb94106759a08448fe288c130400c26bf33</cites><orcidid>0000-0002-5326-7134 ; 0000-0001-6595-3476 ; 0000-0002-4372-7133 ; 0000-0003-4626-0863 ; 0000-0002-0397-7269</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.1c00756$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.1c00756$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35073098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carr, Austin V</creatorcontrib><creatorcontrib>Frey, Brian L</creatorcontrib><creatorcontrib>Scalf, Mark</creatorcontrib><creatorcontrib>Cesnik, Anthony J</creatorcontrib><creatorcontrib>Rolfs, Zach</creatorcontrib><creatorcontrib>Pike, Kyndal A</creatorcontrib><creatorcontrib>Yang, Bing</creatorcontrib><creatorcontrib>Keller, Mark P</creatorcontrib><creatorcontrib>Jarrard, David F</creatorcontrib><creatorcontrib>Shortreed, Michael R</creatorcontrib><creatorcontrib>Smith, Lloyd M</creatorcontrib><title>MetaNetwork Enhances Biological Insights from Quantitative Proteomics Differences by Combining Clustering and Enrichment Analyses</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>Interpreting proteomics data remains challenging due to the large number of proteins that are quantified by modern mass spectrometry methods. Weighted gene correlation network analysis (WGCNA) can identify groups of biologically related proteins using only protein intensity values by constructing protein correlation networks. However, WGCNA is not widespread in proteomic analyses due to challenges in implementing workflows. To facilitate the adoption of WGCNA by the proteomics field, we created MetaNetwork, an open-source, R-based application to perform sophisticated WGCNA workflows with no coding skill requirements for the end user. We demonstrate MetaNetwork’s utility by employing it to identify groups of proteins associated with prostate cancer from a proteomic analysis of tumor and adjacent normal tissue samples. We found a decrease in cytoskeleton-related protein expression, a known hallmark of prostate tumors. We further identified changes in module eigenproteins indicative of dysregulation in protein translation and trafficking pathways. These results demonstrate the value of using MetaNetwork to improve the biological interpretation of quantitative proteomics experiments with 15 or more samples.</description><subject>Cluster Analysis</subject><subject>Humans</subject><subject>Male</subject><subject>Mass Spectrometry</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Workflow</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUUtvEzEQthCIlsJPAPnIJel4vd5dX5BKaGml8pLgbHmdceKyawfb2ypH_jluk0ZwQj54pPkeM_MR8prBnEHFTrVJ85tNDBnDiHNmAFrRPCHHTHAx4xLap491J_kReZHSDQATLfDn5IgLaDnI7pj8_oRZf8Z8F-JPeu7X2htM9L0LQ1g5owd65ZNbrXOiNoaRfpu0zy7r7G6Rft25O5PoB2ctRnwg91u6CGPvvPMruhimlDHel9ovi0N0Zj2iz_TM62GbML0kz6weEr7a_yfkx8X598Xl7PrLx6vF2fVM14Ln2bJu2rJjIw2gAWPbWtseGWsqw1mFvawZNK2QGrq67ixWXWcYhxrAVE1vOT8h73a6m6kfcWnKDFEPahPdqONWBe3Uvx3v1moVbpVkAsorAm_3AjH8mjBlNbpkcBi0xzAlVTVV1YhOMlmgYgc1MaQU0R5sGKj7-FSJTx3iU_v4Cu_N3zMeWI95FQDbAR74YYrliOk_on8A43-u7w</recordid><startdate>20220204</startdate><enddate>20220204</enddate><creator>Carr, Austin V</creator><creator>Frey, Brian L</creator><creator>Scalf, Mark</creator><creator>Cesnik, Anthony J</creator><creator>Rolfs, Zach</creator><creator>Pike, Kyndal A</creator><creator>Yang, Bing</creator><creator>Keller, Mark P</creator><creator>Jarrard, David F</creator><creator>Shortreed, Michael R</creator><creator>Smith, Lloyd M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5326-7134</orcidid><orcidid>https://orcid.org/0000-0001-6595-3476</orcidid><orcidid>https://orcid.org/0000-0002-4372-7133</orcidid><orcidid>https://orcid.org/0000-0003-4626-0863</orcidid><orcidid>https://orcid.org/0000-0002-0397-7269</orcidid></search><sort><creationdate>20220204</creationdate><title>MetaNetwork Enhances Biological Insights from Quantitative Proteomics Differences by Combining Clustering and Enrichment Analyses</title><author>Carr, Austin V ; Frey, Brian L ; Scalf, Mark ; Cesnik, Anthony J ; Rolfs, Zach ; Pike, Kyndal A ; Yang, Bing ; Keller, Mark P ; Jarrard, David F ; Shortreed, Michael R ; Smith, Lloyd M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a453t-d46700769c0ec0cf74afbe1162c312eb94106759a08448fe288c130400c26bf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cluster Analysis</topic><topic>Humans</topic><topic>Male</topic><topic>Mass Spectrometry</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carr, Austin V</creatorcontrib><creatorcontrib>Frey, Brian L</creatorcontrib><creatorcontrib>Scalf, Mark</creatorcontrib><creatorcontrib>Cesnik, Anthony J</creatorcontrib><creatorcontrib>Rolfs, Zach</creatorcontrib><creatorcontrib>Pike, Kyndal A</creatorcontrib><creatorcontrib>Yang, Bing</creatorcontrib><creatorcontrib>Keller, Mark P</creatorcontrib><creatorcontrib>Jarrard, David F</creatorcontrib><creatorcontrib>Shortreed, Michael R</creatorcontrib><creatorcontrib>Smith, Lloyd M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carr, Austin V</au><au>Frey, Brian L</au><au>Scalf, Mark</au><au>Cesnik, Anthony J</au><au>Rolfs, Zach</au><au>Pike, Kyndal A</au><au>Yang, Bing</au><au>Keller, Mark P</au><au>Jarrard, David F</au><au>Shortreed, Michael R</au><au>Smith, Lloyd M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MetaNetwork Enhances Biological Insights from Quantitative Proteomics Differences by Combining Clustering and Enrichment Analyses</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2022-02-04</date><risdate>2022</risdate><volume>21</volume><issue>2</issue><spage>410</spage><epage>419</epage><pages>410-419</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>Interpreting proteomics data remains challenging due to the large number of proteins that are quantified by modern mass spectrometry methods. Weighted gene correlation network analysis (WGCNA) can identify groups of biologically related proteins using only protein intensity values by constructing protein correlation networks. However, WGCNA is not widespread in proteomic analyses due to challenges in implementing workflows. To facilitate the adoption of WGCNA by the proteomics field, we created MetaNetwork, an open-source, R-based application to perform sophisticated WGCNA workflows with no coding skill requirements for the end user. We demonstrate MetaNetwork’s utility by employing it to identify groups of proteins associated with prostate cancer from a proteomic analysis of tumor and adjacent normal tissue samples. We found a decrease in cytoskeleton-related protein expression, a known hallmark of prostate tumors. We further identified changes in module eigenproteins indicative of dysregulation in protein translation and trafficking pathways. These results demonstrate the value of using MetaNetwork to improve the biological interpretation of quantitative proteomics experiments with 15 or more samples.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35073098</pmid><doi>10.1021/acs.jproteome.1c00756</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5326-7134</orcidid><orcidid>https://orcid.org/0000-0001-6595-3476</orcidid><orcidid>https://orcid.org/0000-0002-4372-7133</orcidid><orcidid>https://orcid.org/0000-0003-4626-0863</orcidid><orcidid>https://orcid.org/0000-0002-0397-7269</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-3893
ispartof Journal of proteome research, 2022-02, Vol.21 (2), p.410-419
issn 1535-3893
1535-3907
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9150505
source American Chemical Society; MEDLINE
subjects Cluster Analysis
Humans
Male
Mass Spectrometry
Proteins
Proteomics
Workflow
title MetaNetwork Enhances Biological Insights from Quantitative Proteomics Differences by Combining Clustering and Enrichment Analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MetaNetwork%20Enhances%20Biological%20Insights%20from%20Quantitative%20Proteomics%20Differences%20by%20Combining%20Clustering%20and%20Enrichment%20Analyses&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Carr,%20Austin%20V&rft.date=2022-02-04&rft.volume=21&rft.issue=2&rft.spage=410&rft.epage=419&rft.pages=410-419&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.1c00756&rft_dat=%3Cproquest_pubme%3E2622658919%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622658919&rft_id=info:pmid/35073098&rfr_iscdi=true