Ordered and Disordered Carboxylic Acid Monolayers on Calcite (104) and Muscovite (001) Surfaces

The adsorption of carboxylic acid molecules at the calcite (104) and the muscovite (001) surface was investigated using surface X-ray diffraction. All four investigated carboxylic acid molecules, hexanoic acid, octanoic acid, lauric acid, and stearic acid, were found to adsorb at the calcite surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2022-05, Vol.126 (20), p.8855-8862
Hauptverfasser: Brugman, Sander J. T., Accordini, Paolo, Megens, Frank, Devogelaer, Jan-Joris, Vlieg, Elias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The adsorption of carboxylic acid molecules at the calcite (104) and the muscovite (001) surface was investigated using surface X-ray diffraction. All four investigated carboxylic acid molecules, hexanoic acid, octanoic acid, lauric acid, and stearic acid, were found to adsorb at the calcite surface. Whereas the shortest two carboxylic acid molecules, hexanoic acid and octanoic acid, showed limited ordering and a flexible, disordered chain, the two longest carboxylic acid molecules form fully ordered monolayers, i.e., these form highly structured self-assembled monolayers. The latter molecules are oriented almost fully upright, with a tilt of up to 10°. The oxygen atoms of the organic molecules are found at similar positions to those of water molecules at the calcite–water interface. This suggests that in both cases, the oxygen atoms compensate for the broken bonds at the calcite surface. Under the same experimental conditions, stearic acid does not adsorb to K+ and Ca2+-functionalized muscovite mica because the neutral molecules do not engage in the ionic bonds typical for the mica interface. These differences in adsorption behavior are characteristic for the differences of the oil–solid interactions in carbonate and sandstone reservoirs.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.2c01157