LungNet22: A Fine-Tuned Model for Multiclass Classification and Prediction of Lung Disease Using X-ray Images

In recent years, lung disease has increased manyfold, causing millions of casualties annually. To combat the crisis, an efficient, reliable, and affordable lung disease diagnosis technique has become indispensable. In this study, a multiclass classification of lung disease from frontal chest X-ray i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of personalized medicine 2022-04, Vol.12 (5), p.680
Hauptverfasser: Shamrat, F M Javed Mehedi, Azam, Sami, Karim, Asif, Islam, Rakibul, Tasnim, Zarrin, Ghosh, Pronab, De Boer, Friso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 680
container_title Journal of personalized medicine
container_volume 12
creator Shamrat, F M Javed Mehedi
Azam, Sami
Karim, Asif
Islam, Rakibul
Tasnim, Zarrin
Ghosh, Pronab
De Boer, Friso
description In recent years, lung disease has increased manyfold, causing millions of casualties annually. To combat the crisis, an efficient, reliable, and affordable lung disease diagnosis technique has become indispensable. In this study, a multiclass classification of lung disease from frontal chest X-ray imaging using a fine-tuned CNN model is proposed. The classification is conducted on 10 disease classes of the lungs, namely COVID-19, Effusion, Tuberculosis, Pneumonia, Lung Opacity, Mass, Nodule, Pneumothorax, and Pulmonary Fibrosis, along with the Normal class. The dataset is a collective dataset gathered from multiple sources. After pre-processing and balancing the dataset with eight augmentation techniques, a total of 80,000 X-ray images were fed to the model for classification purposes. Initially, eight pre-trained CNN models, AlexNet, GoogLeNet, InceptionV3, MobileNetV2, VGG16, ResNet 50, DenseNet121, and EfficientNetB7, were employed on the dataset. Among these, the VGG16 achieved the highest accuracy at 92.95%. To further improve the classification accuracy, LungNet22 was constructed upon the primary structure of the VGG16 model. An ablation study was used in the work to determine the different hyper-parameters. Using the Adam Optimizer, the proposed model achieved a commendable accuracy of 98.89%. To verify the performance of the model, several performance matrices, including the ROC curve and the AUC values, were computed as well.
doi_str_mv 10.3390/jpm12050680
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9143659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670203886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-7d52b96814fcd9bb0ce779bb50caed535e12cd1ce81b7f005454fbe5750c520b3</originalsourceid><addsrcrecordid>eNpdkctLHTEUxkOxqFhX3ZdAN4JMm8ckM9NFQa7aClfbhUJ3IZOcuc1lJrkmM4L_vRlfXD2Q8yA_Ps7hQ-gzJd84b8j39WagjAgia_IB7TNSiaIsmdzZ6vfQYUprkqMWjEmyi_a4kKyhhO-jYTn51RWMjP3AJ_jceSiuJw8WXwYLPe5CxJdTPzrT65TwYs6uc0aPLnisvcV_I1hnHsfQ4VkNn7oEOgG-SS5P_4qo7_HFoFeQPqGPne4THD7XA3Rzfna9-F0s__y6WJwsC5OPGovKCtY2sqZlZ2zTtsRAVeUqiNFgBRdAmbHUQE3bqiNElKLsWhBVBgQjLT9AP590N1M7gDXgx6h7tYlu0PFeBe3U2x_v_qtVuFMNLbkUTRY4ehaI4XaCNKrBJQN9rz2EKSkmK5pfKWVGv75D12GKPp83U4QRXtczdfxEmRhSitC9LkOJmp1UW05m-sv2_q_si2_8AScTmRU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670203886</pqid></control><display><type>article</type><title>LungNet22: A Fine-Tuned Model for Multiclass Classification and Prediction of Lung Disease Using X-ray Images</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Shamrat, F M Javed Mehedi ; Azam, Sami ; Karim, Asif ; Islam, Rakibul ; Tasnim, Zarrin ; Ghosh, Pronab ; De Boer, Friso</creator><creatorcontrib>Shamrat, F M Javed Mehedi ; Azam, Sami ; Karim, Asif ; Islam, Rakibul ; Tasnim, Zarrin ; Ghosh, Pronab ; De Boer, Friso</creatorcontrib><description>In recent years, lung disease has increased manyfold, causing millions of casualties annually. To combat the crisis, an efficient, reliable, and affordable lung disease diagnosis technique has become indispensable. In this study, a multiclass classification of lung disease from frontal chest X-ray imaging using a fine-tuned CNN model is proposed. The classification is conducted on 10 disease classes of the lungs, namely COVID-19, Effusion, Tuberculosis, Pneumonia, Lung Opacity, Mass, Nodule, Pneumothorax, and Pulmonary Fibrosis, along with the Normal class. The dataset is a collective dataset gathered from multiple sources. After pre-processing and balancing the dataset with eight augmentation techniques, a total of 80,000 X-ray images were fed to the model for classification purposes. Initially, eight pre-trained CNN models, AlexNet, GoogLeNet, InceptionV3, MobileNetV2, VGG16, ResNet 50, DenseNet121, and EfficientNetB7, were employed on the dataset. Among these, the VGG16 achieved the highest accuracy at 92.95%. To further improve the classification accuracy, LungNet22 was constructed upon the primary structure of the VGG16 model. An ablation study was used in the work to determine the different hyper-parameters. Using the Adam Optimizer, the proposed model achieved a commendable accuracy of 98.89%. To verify the performance of the model, several performance matrices, including the ROC curve and the AUC values, were computed as well.</description><identifier>ISSN: 2075-4426</identifier><identifier>EISSN: 2075-4426</identifier><identifier>DOI: 10.3390/jpm12050680</identifier><identifier>PMID: 35629103</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Amino acid sequence ; Artificial intelligence ; Classification ; Coronaviruses ; COVID-19 ; Datasets ; Deep learning ; Effusion ; Fibrosis ; Infections ; Lung cancer ; Lung diseases ; Machine learning ; Medical diagnosis ; Medical imaging ; Medical research ; Performance evaluation ; Pleural effusion ; Pneumonia ; Pneumothorax ; Precision medicine ; Pulmonary fibrosis ; Tuberculosis ; X-rays</subject><ispartof>Journal of personalized medicine, 2022-04, Vol.12 (5), p.680</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-7d52b96814fcd9bb0ce779bb50caed535e12cd1ce81b7f005454fbe5750c520b3</citedby><cites>FETCH-LOGICAL-c339t-7d52b96814fcd9bb0ce779bb50caed535e12cd1ce81b7f005454fbe5750c520b3</cites><orcidid>0000-0001-8532-6816 ; 0000-0002-5524-2328 ; 0000-0001-9176-3537 ; 0000-0001-7572-9750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143659/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143659/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35629103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shamrat, F M Javed Mehedi</creatorcontrib><creatorcontrib>Azam, Sami</creatorcontrib><creatorcontrib>Karim, Asif</creatorcontrib><creatorcontrib>Islam, Rakibul</creatorcontrib><creatorcontrib>Tasnim, Zarrin</creatorcontrib><creatorcontrib>Ghosh, Pronab</creatorcontrib><creatorcontrib>De Boer, Friso</creatorcontrib><title>LungNet22: A Fine-Tuned Model for Multiclass Classification and Prediction of Lung Disease Using X-ray Images</title><title>Journal of personalized medicine</title><addtitle>J Pers Med</addtitle><description>In recent years, lung disease has increased manyfold, causing millions of casualties annually. To combat the crisis, an efficient, reliable, and affordable lung disease diagnosis technique has become indispensable. In this study, a multiclass classification of lung disease from frontal chest X-ray imaging using a fine-tuned CNN model is proposed. The classification is conducted on 10 disease classes of the lungs, namely COVID-19, Effusion, Tuberculosis, Pneumonia, Lung Opacity, Mass, Nodule, Pneumothorax, and Pulmonary Fibrosis, along with the Normal class. The dataset is a collective dataset gathered from multiple sources. After pre-processing and balancing the dataset with eight augmentation techniques, a total of 80,000 X-ray images were fed to the model for classification purposes. Initially, eight pre-trained CNN models, AlexNet, GoogLeNet, InceptionV3, MobileNetV2, VGG16, ResNet 50, DenseNet121, and EfficientNetB7, were employed on the dataset. Among these, the VGG16 achieved the highest accuracy at 92.95%. To further improve the classification accuracy, LungNet22 was constructed upon the primary structure of the VGG16 model. An ablation study was used in the work to determine the different hyper-parameters. Using the Adam Optimizer, the proposed model achieved a commendable accuracy of 98.89%. To verify the performance of the model, several performance matrices, including the ROC curve and the AUC values, were computed as well.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Amino acid sequence</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Effusion</subject><subject>Fibrosis</subject><subject>Infections</subject><subject>Lung cancer</subject><subject>Lung diseases</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Performance evaluation</subject><subject>Pleural effusion</subject><subject>Pneumonia</subject><subject>Pneumothorax</subject><subject>Precision medicine</subject><subject>Pulmonary fibrosis</subject><subject>Tuberculosis</subject><subject>X-rays</subject><issn>2075-4426</issn><issn>2075-4426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkctLHTEUxkOxqFhX3ZdAN4JMm8ckM9NFQa7aClfbhUJ3IZOcuc1lJrkmM4L_vRlfXD2Q8yA_Ps7hQ-gzJd84b8j39WagjAgia_IB7TNSiaIsmdzZ6vfQYUprkqMWjEmyi_a4kKyhhO-jYTn51RWMjP3AJ_jceSiuJw8WXwYLPe5CxJdTPzrT65TwYs6uc0aPLnisvcV_I1hnHsfQ4VkNn7oEOgG-SS5P_4qo7_HFoFeQPqGPne4THD7XA3Rzfna9-F0s__y6WJwsC5OPGovKCtY2sqZlZ2zTtsRAVeUqiNFgBRdAmbHUQE3bqiNElKLsWhBVBgQjLT9AP590N1M7gDXgx6h7tYlu0PFeBe3U2x_v_qtVuFMNLbkUTRY4ehaI4XaCNKrBJQN9rz2EKSkmK5pfKWVGv75D12GKPp83U4QRXtczdfxEmRhSitC9LkOJmp1UW05m-sv2_q_si2_8AScTmRU</recordid><startdate>20220424</startdate><enddate>20220424</enddate><creator>Shamrat, F M Javed Mehedi</creator><creator>Azam, Sami</creator><creator>Karim, Asif</creator><creator>Islam, Rakibul</creator><creator>Tasnim, Zarrin</creator><creator>Ghosh, Pronab</creator><creator>De Boer, Friso</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8532-6816</orcidid><orcidid>https://orcid.org/0000-0002-5524-2328</orcidid><orcidid>https://orcid.org/0000-0001-9176-3537</orcidid><orcidid>https://orcid.org/0000-0001-7572-9750</orcidid></search><sort><creationdate>20220424</creationdate><title>LungNet22: A Fine-Tuned Model for Multiclass Classification and Prediction of Lung Disease Using X-ray Images</title><author>Shamrat, F M Javed Mehedi ; Azam, Sami ; Karim, Asif ; Islam, Rakibul ; Tasnim, Zarrin ; Ghosh, Pronab ; De Boer, Friso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-7d52b96814fcd9bb0ce779bb50caed535e12cd1ce81b7f005454fbe5750c520b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Amino acid sequence</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Effusion</topic><topic>Fibrosis</topic><topic>Infections</topic><topic>Lung cancer</topic><topic>Lung diseases</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Performance evaluation</topic><topic>Pleural effusion</topic><topic>Pneumonia</topic><topic>Pneumothorax</topic><topic>Precision medicine</topic><topic>Pulmonary fibrosis</topic><topic>Tuberculosis</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shamrat, F M Javed Mehedi</creatorcontrib><creatorcontrib>Azam, Sami</creatorcontrib><creatorcontrib>Karim, Asif</creatorcontrib><creatorcontrib>Islam, Rakibul</creatorcontrib><creatorcontrib>Tasnim, Zarrin</creatorcontrib><creatorcontrib>Ghosh, Pronab</creatorcontrib><creatorcontrib>De Boer, Friso</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of personalized medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shamrat, F M Javed Mehedi</au><au>Azam, Sami</au><au>Karim, Asif</au><au>Islam, Rakibul</au><au>Tasnim, Zarrin</au><au>Ghosh, Pronab</au><au>De Boer, Friso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LungNet22: A Fine-Tuned Model for Multiclass Classification and Prediction of Lung Disease Using X-ray Images</atitle><jtitle>Journal of personalized medicine</jtitle><addtitle>J Pers Med</addtitle><date>2022-04-24</date><risdate>2022</risdate><volume>12</volume><issue>5</issue><spage>680</spage><pages>680-</pages><issn>2075-4426</issn><eissn>2075-4426</eissn><abstract>In recent years, lung disease has increased manyfold, causing millions of casualties annually. To combat the crisis, an efficient, reliable, and affordable lung disease diagnosis technique has become indispensable. In this study, a multiclass classification of lung disease from frontal chest X-ray imaging using a fine-tuned CNN model is proposed. The classification is conducted on 10 disease classes of the lungs, namely COVID-19, Effusion, Tuberculosis, Pneumonia, Lung Opacity, Mass, Nodule, Pneumothorax, and Pulmonary Fibrosis, along with the Normal class. The dataset is a collective dataset gathered from multiple sources. After pre-processing and balancing the dataset with eight augmentation techniques, a total of 80,000 X-ray images were fed to the model for classification purposes. Initially, eight pre-trained CNN models, AlexNet, GoogLeNet, InceptionV3, MobileNetV2, VGG16, ResNet 50, DenseNet121, and EfficientNetB7, were employed on the dataset. Among these, the VGG16 achieved the highest accuracy at 92.95%. To further improve the classification accuracy, LungNet22 was constructed upon the primary structure of the VGG16 model. An ablation study was used in the work to determine the different hyper-parameters. Using the Adam Optimizer, the proposed model achieved a commendable accuracy of 98.89%. To verify the performance of the model, several performance matrices, including the ROC curve and the AUC values, were computed as well.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35629103</pmid><doi>10.3390/jpm12050680</doi><orcidid>https://orcid.org/0000-0001-8532-6816</orcidid><orcidid>https://orcid.org/0000-0002-5524-2328</orcidid><orcidid>https://orcid.org/0000-0001-9176-3537</orcidid><orcidid>https://orcid.org/0000-0001-7572-9750</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4426
ispartof Journal of personalized medicine, 2022-04, Vol.12 (5), p.680
issn 2075-4426
2075-4426
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9143659
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects Accuracy
Algorithms
Amino acid sequence
Artificial intelligence
Classification
Coronaviruses
COVID-19
Datasets
Deep learning
Effusion
Fibrosis
Infections
Lung cancer
Lung diseases
Machine learning
Medical diagnosis
Medical imaging
Medical research
Performance evaluation
Pleural effusion
Pneumonia
Pneumothorax
Precision medicine
Pulmonary fibrosis
Tuberculosis
X-rays
title LungNet22: A Fine-Tuned Model for Multiclass Classification and Prediction of Lung Disease Using X-ray Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LungNet22:%20A%20Fine-Tuned%20Model%20for%20Multiclass%20Classification%20and%20Prediction%20of%20Lung%20Disease%20Using%20X-ray%20Images&rft.jtitle=Journal%20of%20personalized%20medicine&rft.au=Shamrat,%20F%20M%20Javed%20Mehedi&rft.date=2022-04-24&rft.volume=12&rft.issue=5&rft.spage=680&rft.pages=680-&rft.issn=2075-4426&rft.eissn=2075-4426&rft_id=info:doi/10.3390/jpm12050680&rft_dat=%3Cproquest_pubme%3E2670203886%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670203886&rft_id=info:pmid/35629103&rfr_iscdi=true