LungNet22: A Fine-Tuned Model for Multiclass Classification and Prediction of Lung Disease Using X-ray Images
In recent years, lung disease has increased manyfold, causing millions of casualties annually. To combat the crisis, an efficient, reliable, and affordable lung disease diagnosis technique has become indispensable. In this study, a multiclass classification of lung disease from frontal chest X-ray i...
Gespeichert in:
Veröffentlicht in: | Journal of personalized medicine 2022-04, Vol.12 (5), p.680 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 680 |
container_title | Journal of personalized medicine |
container_volume | 12 |
creator | Shamrat, F M Javed Mehedi Azam, Sami Karim, Asif Islam, Rakibul Tasnim, Zarrin Ghosh, Pronab De Boer, Friso |
description | In recent years, lung disease has increased manyfold, causing millions of casualties annually. To combat the crisis, an efficient, reliable, and affordable lung disease diagnosis technique has become indispensable. In this study, a multiclass classification of lung disease from frontal chest X-ray imaging using a fine-tuned CNN model is proposed. The classification is conducted on 10 disease classes of the lungs, namely COVID-19, Effusion, Tuberculosis, Pneumonia, Lung Opacity, Mass, Nodule, Pneumothorax, and Pulmonary Fibrosis, along with the Normal class. The dataset is a collective dataset gathered from multiple sources. After pre-processing and balancing the dataset with eight augmentation techniques, a total of 80,000 X-ray images were fed to the model for classification purposes. Initially, eight pre-trained CNN models, AlexNet, GoogLeNet, InceptionV3, MobileNetV2, VGG16, ResNet 50, DenseNet121, and EfficientNetB7, were employed on the dataset. Among these, the VGG16 achieved the highest accuracy at 92.95%. To further improve the classification accuracy, LungNet22 was constructed upon the primary structure of the VGG16 model. An ablation study was used in the work to determine the different hyper-parameters. Using the Adam Optimizer, the proposed model achieved a commendable accuracy of 98.89%. To verify the performance of the model, several performance matrices, including the ROC curve and the AUC values, were computed as well. |
doi_str_mv | 10.3390/jpm12050680 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9143659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670203886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-7d52b96814fcd9bb0ce779bb50caed535e12cd1ce81b7f005454fbe5750c520b3</originalsourceid><addsrcrecordid>eNpdkctLHTEUxkOxqFhX3ZdAN4JMm8ckM9NFQa7aClfbhUJ3IZOcuc1lJrkmM4L_vRlfXD2Q8yA_Ps7hQ-gzJd84b8j39WagjAgia_IB7TNSiaIsmdzZ6vfQYUprkqMWjEmyi_a4kKyhhO-jYTn51RWMjP3AJ_jceSiuJw8WXwYLPe5CxJdTPzrT65TwYs6uc0aPLnisvcV_I1hnHsfQ4VkNn7oEOgG-SS5P_4qo7_HFoFeQPqGPne4THD7XA3Rzfna9-F0s__y6WJwsC5OPGovKCtY2sqZlZ2zTtsRAVeUqiNFgBRdAmbHUQE3bqiNElKLsWhBVBgQjLT9AP590N1M7gDXgx6h7tYlu0PFeBe3U2x_v_qtVuFMNLbkUTRY4ehaI4XaCNKrBJQN9rz2EKSkmK5pfKWVGv75D12GKPp83U4QRXtczdfxEmRhSitC9LkOJmp1UW05m-sv2_q_si2_8AScTmRU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670203886</pqid></control><display><type>article</type><title>LungNet22: A Fine-Tuned Model for Multiclass Classification and Prediction of Lung Disease Using X-ray Images</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Shamrat, F M Javed Mehedi ; Azam, Sami ; Karim, Asif ; Islam, Rakibul ; Tasnim, Zarrin ; Ghosh, Pronab ; De Boer, Friso</creator><creatorcontrib>Shamrat, F M Javed Mehedi ; Azam, Sami ; Karim, Asif ; Islam, Rakibul ; Tasnim, Zarrin ; Ghosh, Pronab ; De Boer, Friso</creatorcontrib><description>In recent years, lung disease has increased manyfold, causing millions of casualties annually. To combat the crisis, an efficient, reliable, and affordable lung disease diagnosis technique has become indispensable. In this study, a multiclass classification of lung disease from frontal chest X-ray imaging using a fine-tuned CNN model is proposed. The classification is conducted on 10 disease classes of the lungs, namely COVID-19, Effusion, Tuberculosis, Pneumonia, Lung Opacity, Mass, Nodule, Pneumothorax, and Pulmonary Fibrosis, along with the Normal class. The dataset is a collective dataset gathered from multiple sources. After pre-processing and balancing the dataset with eight augmentation techniques, a total of 80,000 X-ray images were fed to the model for classification purposes. Initially, eight pre-trained CNN models, AlexNet, GoogLeNet, InceptionV3, MobileNetV2, VGG16, ResNet 50, DenseNet121, and EfficientNetB7, were employed on the dataset. Among these, the VGG16 achieved the highest accuracy at 92.95%. To further improve the classification accuracy, LungNet22 was constructed upon the primary structure of the VGG16 model. An ablation study was used in the work to determine the different hyper-parameters. Using the Adam Optimizer, the proposed model achieved a commendable accuracy of 98.89%. To verify the performance of the model, several performance matrices, including the ROC curve and the AUC values, were computed as well.</description><identifier>ISSN: 2075-4426</identifier><identifier>EISSN: 2075-4426</identifier><identifier>DOI: 10.3390/jpm12050680</identifier><identifier>PMID: 35629103</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Amino acid sequence ; Artificial intelligence ; Classification ; Coronaviruses ; COVID-19 ; Datasets ; Deep learning ; Effusion ; Fibrosis ; Infections ; Lung cancer ; Lung diseases ; Machine learning ; Medical diagnosis ; Medical imaging ; Medical research ; Performance evaluation ; Pleural effusion ; Pneumonia ; Pneumothorax ; Precision medicine ; Pulmonary fibrosis ; Tuberculosis ; X-rays</subject><ispartof>Journal of personalized medicine, 2022-04, Vol.12 (5), p.680</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-7d52b96814fcd9bb0ce779bb50caed535e12cd1ce81b7f005454fbe5750c520b3</citedby><cites>FETCH-LOGICAL-c339t-7d52b96814fcd9bb0ce779bb50caed535e12cd1ce81b7f005454fbe5750c520b3</cites><orcidid>0000-0001-8532-6816 ; 0000-0002-5524-2328 ; 0000-0001-9176-3537 ; 0000-0001-7572-9750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143659/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143659/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35629103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shamrat, F M Javed Mehedi</creatorcontrib><creatorcontrib>Azam, Sami</creatorcontrib><creatorcontrib>Karim, Asif</creatorcontrib><creatorcontrib>Islam, Rakibul</creatorcontrib><creatorcontrib>Tasnim, Zarrin</creatorcontrib><creatorcontrib>Ghosh, Pronab</creatorcontrib><creatorcontrib>De Boer, Friso</creatorcontrib><title>LungNet22: A Fine-Tuned Model for Multiclass Classification and Prediction of Lung Disease Using X-ray Images</title><title>Journal of personalized medicine</title><addtitle>J Pers Med</addtitle><description>In recent years, lung disease has increased manyfold, causing millions of casualties annually. To combat the crisis, an efficient, reliable, and affordable lung disease diagnosis technique has become indispensable. In this study, a multiclass classification of lung disease from frontal chest X-ray imaging using a fine-tuned CNN model is proposed. The classification is conducted on 10 disease classes of the lungs, namely COVID-19, Effusion, Tuberculosis, Pneumonia, Lung Opacity, Mass, Nodule, Pneumothorax, and Pulmonary Fibrosis, along with the Normal class. The dataset is a collective dataset gathered from multiple sources. After pre-processing and balancing the dataset with eight augmentation techniques, a total of 80,000 X-ray images were fed to the model for classification purposes. Initially, eight pre-trained CNN models, AlexNet, GoogLeNet, InceptionV3, MobileNetV2, VGG16, ResNet 50, DenseNet121, and EfficientNetB7, were employed on the dataset. Among these, the VGG16 achieved the highest accuracy at 92.95%. To further improve the classification accuracy, LungNet22 was constructed upon the primary structure of the VGG16 model. An ablation study was used in the work to determine the different hyper-parameters. Using the Adam Optimizer, the proposed model achieved a commendable accuracy of 98.89%. To verify the performance of the model, several performance matrices, including the ROC curve and the AUC values, were computed as well.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Amino acid sequence</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Effusion</subject><subject>Fibrosis</subject><subject>Infections</subject><subject>Lung cancer</subject><subject>Lung diseases</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Performance evaluation</subject><subject>Pleural effusion</subject><subject>Pneumonia</subject><subject>Pneumothorax</subject><subject>Precision medicine</subject><subject>Pulmonary fibrosis</subject><subject>Tuberculosis</subject><subject>X-rays</subject><issn>2075-4426</issn><issn>2075-4426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkctLHTEUxkOxqFhX3ZdAN4JMm8ckM9NFQa7aClfbhUJ3IZOcuc1lJrkmM4L_vRlfXD2Q8yA_Ps7hQ-gzJd84b8j39WagjAgia_IB7TNSiaIsmdzZ6vfQYUprkqMWjEmyi_a4kKyhhO-jYTn51RWMjP3AJ_jceSiuJw8WXwYLPe5CxJdTPzrT65TwYs6uc0aPLnisvcV_I1hnHsfQ4VkNn7oEOgG-SS5P_4qo7_HFoFeQPqGPne4THD7XA3Rzfna9-F0s__y6WJwsC5OPGovKCtY2sqZlZ2zTtsRAVeUqiNFgBRdAmbHUQE3bqiNElKLsWhBVBgQjLT9AP590N1M7gDXgx6h7tYlu0PFeBe3U2x_v_qtVuFMNLbkUTRY4ehaI4XaCNKrBJQN9rz2EKSkmK5pfKWVGv75D12GKPp83U4QRXtczdfxEmRhSitC9LkOJmp1UW05m-sv2_q_si2_8AScTmRU</recordid><startdate>20220424</startdate><enddate>20220424</enddate><creator>Shamrat, F M Javed Mehedi</creator><creator>Azam, Sami</creator><creator>Karim, Asif</creator><creator>Islam, Rakibul</creator><creator>Tasnim, Zarrin</creator><creator>Ghosh, Pronab</creator><creator>De Boer, Friso</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8532-6816</orcidid><orcidid>https://orcid.org/0000-0002-5524-2328</orcidid><orcidid>https://orcid.org/0000-0001-9176-3537</orcidid><orcidid>https://orcid.org/0000-0001-7572-9750</orcidid></search><sort><creationdate>20220424</creationdate><title>LungNet22: A Fine-Tuned Model for Multiclass Classification and Prediction of Lung Disease Using X-ray Images</title><author>Shamrat, F M Javed Mehedi ; Azam, Sami ; Karim, Asif ; Islam, Rakibul ; Tasnim, Zarrin ; Ghosh, Pronab ; De Boer, Friso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-7d52b96814fcd9bb0ce779bb50caed535e12cd1ce81b7f005454fbe5750c520b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Amino acid sequence</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Effusion</topic><topic>Fibrosis</topic><topic>Infections</topic><topic>Lung cancer</topic><topic>Lung diseases</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Performance evaluation</topic><topic>Pleural effusion</topic><topic>Pneumonia</topic><topic>Pneumothorax</topic><topic>Precision medicine</topic><topic>Pulmonary fibrosis</topic><topic>Tuberculosis</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shamrat, F M Javed Mehedi</creatorcontrib><creatorcontrib>Azam, Sami</creatorcontrib><creatorcontrib>Karim, Asif</creatorcontrib><creatorcontrib>Islam, Rakibul</creatorcontrib><creatorcontrib>Tasnim, Zarrin</creatorcontrib><creatorcontrib>Ghosh, Pronab</creatorcontrib><creatorcontrib>De Boer, Friso</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of personalized medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shamrat, F M Javed Mehedi</au><au>Azam, Sami</au><au>Karim, Asif</au><au>Islam, Rakibul</au><au>Tasnim, Zarrin</au><au>Ghosh, Pronab</au><au>De Boer, Friso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LungNet22: A Fine-Tuned Model for Multiclass Classification and Prediction of Lung Disease Using X-ray Images</atitle><jtitle>Journal of personalized medicine</jtitle><addtitle>J Pers Med</addtitle><date>2022-04-24</date><risdate>2022</risdate><volume>12</volume><issue>5</issue><spage>680</spage><pages>680-</pages><issn>2075-4426</issn><eissn>2075-4426</eissn><abstract>In recent years, lung disease has increased manyfold, causing millions of casualties annually. To combat the crisis, an efficient, reliable, and affordable lung disease diagnosis technique has become indispensable. In this study, a multiclass classification of lung disease from frontal chest X-ray imaging using a fine-tuned CNN model is proposed. The classification is conducted on 10 disease classes of the lungs, namely COVID-19, Effusion, Tuberculosis, Pneumonia, Lung Opacity, Mass, Nodule, Pneumothorax, and Pulmonary Fibrosis, along with the Normal class. The dataset is a collective dataset gathered from multiple sources. After pre-processing and balancing the dataset with eight augmentation techniques, a total of 80,000 X-ray images were fed to the model for classification purposes. Initially, eight pre-trained CNN models, AlexNet, GoogLeNet, InceptionV3, MobileNetV2, VGG16, ResNet 50, DenseNet121, and EfficientNetB7, were employed on the dataset. Among these, the VGG16 achieved the highest accuracy at 92.95%. To further improve the classification accuracy, LungNet22 was constructed upon the primary structure of the VGG16 model. An ablation study was used in the work to determine the different hyper-parameters. Using the Adam Optimizer, the proposed model achieved a commendable accuracy of 98.89%. To verify the performance of the model, several performance matrices, including the ROC curve and the AUC values, were computed as well.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35629103</pmid><doi>10.3390/jpm12050680</doi><orcidid>https://orcid.org/0000-0001-8532-6816</orcidid><orcidid>https://orcid.org/0000-0002-5524-2328</orcidid><orcidid>https://orcid.org/0000-0001-9176-3537</orcidid><orcidid>https://orcid.org/0000-0001-7572-9750</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-4426 |
ispartof | Journal of personalized medicine, 2022-04, Vol.12 (5), p.680 |
issn | 2075-4426 2075-4426 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9143659 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Accuracy Algorithms Amino acid sequence Artificial intelligence Classification Coronaviruses COVID-19 Datasets Deep learning Effusion Fibrosis Infections Lung cancer Lung diseases Machine learning Medical diagnosis Medical imaging Medical research Performance evaluation Pleural effusion Pneumonia Pneumothorax Precision medicine Pulmonary fibrosis Tuberculosis X-rays |
title | LungNet22: A Fine-Tuned Model for Multiclass Classification and Prediction of Lung Disease Using X-ray Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LungNet22:%20A%20Fine-Tuned%20Model%20for%20Multiclass%20Classification%20and%20Prediction%20of%20Lung%20Disease%20Using%20X-ray%20Images&rft.jtitle=Journal%20of%20personalized%20medicine&rft.au=Shamrat,%20F%20M%20Javed%20Mehedi&rft.date=2022-04-24&rft.volume=12&rft.issue=5&rft.spage=680&rft.pages=680-&rft.issn=2075-4426&rft.eissn=2075-4426&rft_id=info:doi/10.3390/jpm12050680&rft_dat=%3Cproquest_pubme%3E2670203886%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670203886&rft_id=info:pmid/35629103&rfr_iscdi=true |