Lysophosphatidylcholine acyltransferase 1 controls mitochondrial reactive oxygen species generation and survival of retinal photoreceptor cells

Due to their high energy demands and characteristic morphology, retinal photoreceptor cells require a specialized lipid metabolism for survival and function. Accordingly, dysregulation of lipid metabolism leads to the photoreceptor cell death and retinal degeneration. Mice bearing a frameshift mutat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2022-06, Vol.298 (6), p.101958-101958, Article 101958
Hauptverfasser: Nagata, Katsuyuki, Hishikawa, Daisuke, Sagara, Hiroshi, Saito, Masamichi, Watanabe, Sumiko, Shimizu, Takao, Shindou, Hideo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101958
container_issue 6
container_start_page 101958
container_title The Journal of biological chemistry
container_volume 298
creator Nagata, Katsuyuki
Hishikawa, Daisuke
Sagara, Hiroshi
Saito, Masamichi
Watanabe, Sumiko
Shimizu, Takao
Shindou, Hideo
description Due to their high energy demands and characteristic morphology, retinal photoreceptor cells require a specialized lipid metabolism for survival and function. Accordingly, dysregulation of lipid metabolism leads to the photoreceptor cell death and retinal degeneration. Mice bearing a frameshift mutation in the gene encoding lysophosphatidylcholine acyltransferase 1 (Lpcat1), which produces saturated phosphatidylcholine (PC) composed of two saturated fatty acids, has been reported to cause spontaneous retinal degeneration in mice; however, the mechanism by which this mutation affects degeneration is unclear. In this study, we performed a detailed characterization of LPCAT1 in the retina and found that genetic deletion of Lpcat1 induces light-independent and photoreceptor-specific apoptosis in mice. Lipidomic analyses of the retina and isolated photoreceptor outer segment (OS) suggested that loss of Lpcat1 not only decreased saturated PC production but also affected membrane lipid composition, presumably by altering saturated fatty acyl-CoA availability. Furthermore, we demonstrated that Lpcat1 deletion led to increased mitochondrial reactive oxygen species levels in photoreceptor cells, but not in other retinal cells, and did not affect the OS structure or trafficking of OS-localized proteins. These results suggest that the LPCAT1-dependent production of saturated PC plays critical roles in photoreceptor maturation. Our findings highlight the therapeutic potential of saturated fatty acid metabolism in photoreceptor cell degeneration–related retinal diseases.
doi_str_mv 10.1016/j.jbc.2022.101958
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9136105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925822003982</els_id><sourcerecordid>2654293545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-b63f78a7611d1e8a1356af05e5fdabeb743cd7fd6e818038262dfb7e4ca9f18e3</originalsourceid><addsrcrecordid>eNp9UU2LFDEQDaK44-oP8CI5eukxlZ70B4Igi18w4EXBW0gnlZ0MPUmbZJrtX-FfNs2si17MpSrkvVep9wh5CWwLDJo3x-1x0FvOOF_vvegekQ2wrq5qAT8ekw1jHKqei-6KPEvpyMrZ9fCUXNViJ3jT9hvya7-kMB1Cmg4qO7OM-hBG55EqvYw5Kp8sRpWQAtXB5xjGRE8uhwLzJjo10ohKZzcjDXfLLXqaJtQOEy19YWYXPFXe0HSOs5sLPthCyc6XtszNIaLGqRSqcRzTc_LEqjHhi_t6Tb5__PDt5nO1__rpy837faUFtLkamtq2nWobAAPYKahFoywTKKxRAw7trtamtabBDjpWd7zhxg4t7rTqLXRYX5N3F93pPJzQaCy7qVFO0Z1UXGRQTv774t1B3oZZ9lA3wEQReH0vEMPPM6YsTy6tKyiP4Zwkb8SO96vRBQoXqI4hpYj2YQwwuQYpj7IEKdcg5SXIwnn19_8eGH-SK4C3FwAWl2aHUaZiu9doXHE0SxPcf-R_A5I9tVE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654293545</pqid></control><display><type>article</type><title>Lysophosphatidylcholine acyltransferase 1 controls mitochondrial reactive oxygen species generation and survival of retinal photoreceptor cells</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Nagata, Katsuyuki ; Hishikawa, Daisuke ; Sagara, Hiroshi ; Saito, Masamichi ; Watanabe, Sumiko ; Shimizu, Takao ; Shindou, Hideo</creator><creatorcontrib>Nagata, Katsuyuki ; Hishikawa, Daisuke ; Sagara, Hiroshi ; Saito, Masamichi ; Watanabe, Sumiko ; Shimizu, Takao ; Shindou, Hideo</creatorcontrib><description>Due to their high energy demands and characteristic morphology, retinal photoreceptor cells require a specialized lipid metabolism for survival and function. Accordingly, dysregulation of lipid metabolism leads to the photoreceptor cell death and retinal degeneration. Mice bearing a frameshift mutation in the gene encoding lysophosphatidylcholine acyltransferase 1 (Lpcat1), which produces saturated phosphatidylcholine (PC) composed of two saturated fatty acids, has been reported to cause spontaneous retinal degeneration in mice; however, the mechanism by which this mutation affects degeneration is unclear. In this study, we performed a detailed characterization of LPCAT1 in the retina and found that genetic deletion of Lpcat1 induces light-independent and photoreceptor-specific apoptosis in mice. Lipidomic analyses of the retina and isolated photoreceptor outer segment (OS) suggested that loss of Lpcat1 not only decreased saturated PC production but also affected membrane lipid composition, presumably by altering saturated fatty acyl-CoA availability. Furthermore, we demonstrated that Lpcat1 deletion led to increased mitochondrial reactive oxygen species levels in photoreceptor cells, but not in other retinal cells, and did not affect the OS structure or trafficking of OS-localized proteins. These results suggest that the LPCAT1-dependent production of saturated PC plays critical roles in photoreceptor maturation. Our findings highlight the therapeutic potential of saturated fatty acid metabolism in photoreceptor cell degeneration–related retinal diseases.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2022.101958</identifier><identifier>PMID: 35452679</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>apoptosis ; membrane phospholipids ; photoreceptor cells ; retinal degeneration ; saturated fatty acid</subject><ispartof>The Journal of biological chemistry, 2022-06, Vol.298 (6), p.101958-101958, Article 101958</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2022 The Authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-b63f78a7611d1e8a1356af05e5fdabeb743cd7fd6e818038262dfb7e4ca9f18e3</citedby><cites>FETCH-LOGICAL-c517t-b63f78a7611d1e8a1356af05e5fdabeb743cd7fd6e818038262dfb7e4ca9f18e3</cites><orcidid>0000-0003-3473-9850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9136105/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9136105/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35452679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagata, Katsuyuki</creatorcontrib><creatorcontrib>Hishikawa, Daisuke</creatorcontrib><creatorcontrib>Sagara, Hiroshi</creatorcontrib><creatorcontrib>Saito, Masamichi</creatorcontrib><creatorcontrib>Watanabe, Sumiko</creatorcontrib><creatorcontrib>Shimizu, Takao</creatorcontrib><creatorcontrib>Shindou, Hideo</creatorcontrib><title>Lysophosphatidylcholine acyltransferase 1 controls mitochondrial reactive oxygen species generation and survival of retinal photoreceptor cells</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Due to their high energy demands and characteristic morphology, retinal photoreceptor cells require a specialized lipid metabolism for survival and function. Accordingly, dysregulation of lipid metabolism leads to the photoreceptor cell death and retinal degeneration. Mice bearing a frameshift mutation in the gene encoding lysophosphatidylcholine acyltransferase 1 (Lpcat1), which produces saturated phosphatidylcholine (PC) composed of two saturated fatty acids, has been reported to cause spontaneous retinal degeneration in mice; however, the mechanism by which this mutation affects degeneration is unclear. In this study, we performed a detailed characterization of LPCAT1 in the retina and found that genetic deletion of Lpcat1 induces light-independent and photoreceptor-specific apoptosis in mice. Lipidomic analyses of the retina and isolated photoreceptor outer segment (OS) suggested that loss of Lpcat1 not only decreased saturated PC production but also affected membrane lipid composition, presumably by altering saturated fatty acyl-CoA availability. Furthermore, we demonstrated that Lpcat1 deletion led to increased mitochondrial reactive oxygen species levels in photoreceptor cells, but not in other retinal cells, and did not affect the OS structure or trafficking of OS-localized proteins. These results suggest that the LPCAT1-dependent production of saturated PC plays critical roles in photoreceptor maturation. Our findings highlight the therapeutic potential of saturated fatty acid metabolism in photoreceptor cell degeneration–related retinal diseases.</description><subject>apoptosis</subject><subject>membrane phospholipids</subject><subject>photoreceptor cells</subject><subject>retinal degeneration</subject><subject>saturated fatty acid</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UU2LFDEQDaK44-oP8CI5eukxlZ70B4Igi18w4EXBW0gnlZ0MPUmbZJrtX-FfNs2si17MpSrkvVep9wh5CWwLDJo3x-1x0FvOOF_vvegekQ2wrq5qAT8ekw1jHKqei-6KPEvpyMrZ9fCUXNViJ3jT9hvya7-kMB1Cmg4qO7OM-hBG55EqvYw5Kp8sRpWQAtXB5xjGRE8uhwLzJjo10ohKZzcjDXfLLXqaJtQOEy19YWYXPFXe0HSOs5sLPthCyc6XtszNIaLGqRSqcRzTc_LEqjHhi_t6Tb5__PDt5nO1__rpy837faUFtLkamtq2nWobAAPYKahFoywTKKxRAw7trtamtabBDjpWd7zhxg4t7rTqLXRYX5N3F93pPJzQaCy7qVFO0Z1UXGRQTv774t1B3oZZ9lA3wEQReH0vEMPPM6YsTy6tKyiP4Zwkb8SO96vRBQoXqI4hpYj2YQwwuQYpj7IEKdcg5SXIwnn19_8eGH-SK4C3FwAWl2aHUaZiu9doXHE0SxPcf-R_A5I9tVE</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Nagata, Katsuyuki</creator><creator>Hishikawa, Daisuke</creator><creator>Sagara, Hiroshi</creator><creator>Saito, Masamichi</creator><creator>Watanabe, Sumiko</creator><creator>Shimizu, Takao</creator><creator>Shindou, Hideo</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3473-9850</orcidid></search><sort><creationdate>20220601</creationdate><title>Lysophosphatidylcholine acyltransferase 1 controls mitochondrial reactive oxygen species generation and survival of retinal photoreceptor cells</title><author>Nagata, Katsuyuki ; Hishikawa, Daisuke ; Sagara, Hiroshi ; Saito, Masamichi ; Watanabe, Sumiko ; Shimizu, Takao ; Shindou, Hideo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-b63f78a7611d1e8a1356af05e5fdabeb743cd7fd6e818038262dfb7e4ca9f18e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>apoptosis</topic><topic>membrane phospholipids</topic><topic>photoreceptor cells</topic><topic>retinal degeneration</topic><topic>saturated fatty acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagata, Katsuyuki</creatorcontrib><creatorcontrib>Hishikawa, Daisuke</creatorcontrib><creatorcontrib>Sagara, Hiroshi</creatorcontrib><creatorcontrib>Saito, Masamichi</creatorcontrib><creatorcontrib>Watanabe, Sumiko</creatorcontrib><creatorcontrib>Shimizu, Takao</creatorcontrib><creatorcontrib>Shindou, Hideo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagata, Katsuyuki</au><au>Hishikawa, Daisuke</au><au>Sagara, Hiroshi</au><au>Saito, Masamichi</au><au>Watanabe, Sumiko</au><au>Shimizu, Takao</au><au>Shindou, Hideo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lysophosphatidylcholine acyltransferase 1 controls mitochondrial reactive oxygen species generation and survival of retinal photoreceptor cells</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>298</volume><issue>6</issue><spage>101958</spage><epage>101958</epage><pages>101958-101958</pages><artnum>101958</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Due to their high energy demands and characteristic morphology, retinal photoreceptor cells require a specialized lipid metabolism for survival and function. Accordingly, dysregulation of lipid metabolism leads to the photoreceptor cell death and retinal degeneration. Mice bearing a frameshift mutation in the gene encoding lysophosphatidylcholine acyltransferase 1 (Lpcat1), which produces saturated phosphatidylcholine (PC) composed of two saturated fatty acids, has been reported to cause spontaneous retinal degeneration in mice; however, the mechanism by which this mutation affects degeneration is unclear. In this study, we performed a detailed characterization of LPCAT1 in the retina and found that genetic deletion of Lpcat1 induces light-independent and photoreceptor-specific apoptosis in mice. Lipidomic analyses of the retina and isolated photoreceptor outer segment (OS) suggested that loss of Lpcat1 not only decreased saturated PC production but also affected membrane lipid composition, presumably by altering saturated fatty acyl-CoA availability. Furthermore, we demonstrated that Lpcat1 deletion led to increased mitochondrial reactive oxygen species levels in photoreceptor cells, but not in other retinal cells, and did not affect the OS structure or trafficking of OS-localized proteins. These results suggest that the LPCAT1-dependent production of saturated PC plays critical roles in photoreceptor maturation. Our findings highlight the therapeutic potential of saturated fatty acid metabolism in photoreceptor cell degeneration–related retinal diseases.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35452679</pmid><doi>10.1016/j.jbc.2022.101958</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3473-9850</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2022-06, Vol.298 (6), p.101958-101958, Article 101958
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9136105
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects apoptosis
membrane phospholipids
photoreceptor cells
retinal degeneration
saturated fatty acid
title Lysophosphatidylcholine acyltransferase 1 controls mitochondrial reactive oxygen species generation and survival of retinal photoreceptor cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lysophosphatidylcholine%20acyltransferase%201%20controls%20mitochondrial%20reactive%20oxygen%20species%20generation%20and%20survival%20of%20retinal%20photoreceptor%20cells&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Nagata,%20Katsuyuki&rft.date=2022-06-01&rft.volume=298&rft.issue=6&rft.spage=101958&rft.epage=101958&rft.pages=101958-101958&rft.artnum=101958&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2022.101958&rft_dat=%3Cproquest_pubme%3E2654293545%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654293545&rft_id=info:pmid/35452679&rft_els_id=S0021925822003982&rfr_iscdi=true