Characterization and Performance Testing of an Intumescent Nanoinhibitor for Inhibiting Coal Spontaneous Combustion

Considering disadvantages such as the low thermal stability and environmental pollution of existing gel inhibitors, a green and stable intumescent nanoinhibitor (INI) was prepared and tested. First, polyacrylamide (PAM), nano-silica, and intumescent flame retardant (IFR) were selected as raw materia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2022-05, Vol.7 (20), p.17202-17214
Hauptverfasser: Huang, Zhian, Song, Donghong, Zhang, Yinghua, Yin, Yichao, Hu, Xiangming, Gao, Yukun, Yang, Yifu, Tian, Ye
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Considering disadvantages such as the low thermal stability and environmental pollution of existing gel inhibitors, a green and stable intumescent nanoinhibitor (INI) was prepared and tested. First, polyacrylamide (PAM), nano-silica, and intumescent flame retardant (IFR) were selected as raw materials. The INI was prepared by nanoparticle modification and cross-linking polymerization. Then, the structure and physical properties of INI were tested by Fourier transform infrared spectroscopy, scanning electron microscopy, and rheological experiments. Meanwhile, the inhibition performance of INI was studied through thermogravimetric analysis-Fourier transfer infrared spectroscopy (TGA-FTIR) analysis. The results suggest that the nanomodification improved the dispersibility of INI particles. The addition of modified nano-silica (MNS) and IFR enhances the strength of the reticular structure, thereby improving the transport convenience and covering ability of the INI gel. At high temperatures, IFR can generate a porous foamed carbon layer that further coats the coal. After INI inhibition treatment, the characteristic temperature and activation energy of coal were significantly improved, and the production of carbon monoxide and carbon dioxide decreased. Hence, irrespective of physical properties, physical inhibition performance, or chemical inhibition performance, INI performed well. Research results can provide valuable references for the preparation and performance study of a coal spontaneous combustion inhibitor.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.2c00998