Crispr/Cas9‐mediated cleavages facilitate homologous recombination during genetic engineering of a large chromosomal region

Homologous recombination over large genomic regions is difficult to achieve due to low efficiencies. Here, we report the successful engineering of a humanized mTert allele, hmTert, in the mouse genome by replacing an 18.1‐kb genomic region around the mTert gene with a recombinant fragment of over 45...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2020-09, Vol.117 (9), p.2816-2826
Hauptverfasser: Zhang, Fan, Cheng, De, Wang, Shuwen, Zhu, Jiyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2826
container_issue 9
container_start_page 2816
container_title Biotechnology and bioengineering
container_volume 117
creator Zhang, Fan
Cheng, De
Wang, Shuwen
Zhu, Jiyue
description Homologous recombination over large genomic regions is difficult to achieve due to low efficiencies. Here, we report the successful engineering of a humanized mTert allele, hmTert, in the mouse genome by replacing an 18.1‐kb genomic region around the mTert gene with a recombinant fragment of over 45.5 kb, using homologous recombination facilitated by the Crispr/Cas9 technology, in mouse embryonic stem cells (mESCs). In our experiments, with DNA double‐strand breaks (DSBs) generated by Crispr/Cas9 system, the homologous recombination efficiency was up to 11% and 16% in two mESC lines TC1 and v6.5, respectively. Overall, we obtained a total of 27 mESC clones with heterozygous hmTert/mTert alleles and three clones with homozygous hmTert alleles. DSBs induced by Crispr/Cas9 cleavages also caused high rates of genomic DNA deletions and mutations at single‐guide RNA target sites. Our results indicated that the Crispr/Cas9 system significantly increased the efficiency of homologous recombination‐mediated gene editing over a large genomic region in mammalian cells, and also caused frequent mutations at unedited target sites. Overall, this strategy provides an efficient and feasible way for manipulating large chromosomal regions. Extremely low efficiency is a bottleneck for the manipulation of large chromosomal regions in genome editing by homologous recombination. In this study, the authors designed a strategy that allowed the modification of large segments of mouse genome by combining the traditional homologous recombination approach with Crispr/Cas9‐assisted genome cleavages. The data demonstrated the feasibility and efficiency of this strategy by successfully replacing an 18‐kb genomic region at the mTert locus with a 45‐kb chimeric hTERT/mTert fragment in mouse embryonic stem cells.
doi_str_mv 10.1002/bit.27441
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9132348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2433238619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5461-d005bb9e717cb15f56c21c0c15041265c963708c1805d2f72cda268167edac553</originalsourceid><addsrcrecordid>eNp1kc9qFTEUh4NY7LW68AUk4MYupjfJTP7MRtBL1ULBTV2HTObM3JRMck1mKl0U-gg-o09i7G2LCq5CTr7zcU5-CL2i5IQSwtadm0-YbBr6BK0oaWVFWEueohUhRFQ1b9khep7zZblKJcQzdFizpmmlUit0s0ku79J6Y3L78_bHBL0zM_TYejBXZoSMB2Odd3Op4m2coo9jXDJOYOPUuWBmFwPul-TCiEcIMDuLIYwuANzV4oAN9iaNgO02FUGOk_GlfyyNL9DBYHyGl_fnEfr68fRi87k6__LpbPP-vLK8EbTqCeFd14Kk0naUD1xYRi2xlJOGMsFtK2pJlKWK8J4NktneMKGokNAby3l9hN7tvbulKytaCHMyXu-Sm0y61tE4_fdLcFs9xivd0prVjSqCt_eCFL8tkGc9uWzBexOgfIdmDRFccqpoQd_8g17GJYWyXqHqolOCtoU63lM2xZwTDI_DUKJ_h6pLqPou1MK-_nP6R_IhxQKs98B35-H6_yb94exir_wFidWu6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2433238619</pqid></control><display><type>article</type><title>Crispr/Cas9‐mediated cleavages facilitate homologous recombination during genetic engineering of a large chromosomal region</title><source>Wiley Journals</source><creator>Zhang, Fan ; Cheng, De ; Wang, Shuwen ; Zhu, Jiyue</creator><creatorcontrib>Zhang, Fan ; Cheng, De ; Wang, Shuwen ; Zhu, Jiyue</creatorcontrib><description>Homologous recombination over large genomic regions is difficult to achieve due to low efficiencies. Here, we report the successful engineering of a humanized mTert allele, hmTert, in the mouse genome by replacing an 18.1‐kb genomic region around the mTert gene with a recombinant fragment of over 45.5 kb, using homologous recombination facilitated by the Crispr/Cas9 technology, in mouse embryonic stem cells (mESCs). In our experiments, with DNA double‐strand breaks (DSBs) generated by Crispr/Cas9 system, the homologous recombination efficiency was up to 11% and 16% in two mESC lines TC1 and v6.5, respectively. Overall, we obtained a total of 27 mESC clones with heterozygous hmTert/mTert alleles and three clones with homozygous hmTert alleles. DSBs induced by Crispr/Cas9 cleavages also caused high rates of genomic DNA deletions and mutations at single‐guide RNA target sites. Our results indicated that the Crispr/Cas9 system significantly increased the efficiency of homologous recombination‐mediated gene editing over a large genomic region in mammalian cells, and also caused frequent mutations at unedited target sites. Overall, this strategy provides an efficient and feasible way for manipulating large chromosomal regions. Extremely low efficiency is a bottleneck for the manipulation of large chromosomal regions in genome editing by homologous recombination. In this study, the authors designed a strategy that allowed the modification of large segments of mouse genome by combining the traditional homologous recombination approach with Crispr/Cas9‐assisted genome cleavages. The data demonstrated the feasibility and efficiency of this strategy by successfully replacing an 18‐kb genomic region at the mTert locus with a 45‐kb chimeric hTERT/mTert fragment in mouse embryonic stem cells.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.27441</identifier><identifier>PMID: 32449788</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Alleles ; Cloning ; CRISPR ; Crispr/Cas9 ; Deoxyribonucleic acid ; DNA ; DNA damage ; Embryo cells ; Genetic engineering ; Genetic modification ; Genomes ; Homologous recombination ; Homology ; knock‐in ; Mammalian cells ; mESC ; Mutation ; Ribonucleic acid ; RNA ; Stem cell transplantation ; Stem cells ; TERT</subject><ispartof>Biotechnology and bioengineering, 2020-09, Vol.117 (9), p.2816-2826</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>This article is protected by copyright. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5461-d005bb9e717cb15f56c21c0c15041265c963708c1805d2f72cda268167edac553</citedby><cites>FETCH-LOGICAL-c5461-d005bb9e717cb15f56c21c0c15041265c963708c1805d2f72cda268167edac553</cites><orcidid>0000-0003-3712-6232 ; 0000-0002-7186-6317 ; 0000-0003-2171-0725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.27441$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.27441$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32449788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Cheng, De</creatorcontrib><creatorcontrib>Wang, Shuwen</creatorcontrib><creatorcontrib>Zhu, Jiyue</creatorcontrib><title>Crispr/Cas9‐mediated cleavages facilitate homologous recombination during genetic engineering of a large chromosomal region</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Homologous recombination over large genomic regions is difficult to achieve due to low efficiencies. Here, we report the successful engineering of a humanized mTert allele, hmTert, in the mouse genome by replacing an 18.1‐kb genomic region around the mTert gene with a recombinant fragment of over 45.5 kb, using homologous recombination facilitated by the Crispr/Cas9 technology, in mouse embryonic stem cells (mESCs). In our experiments, with DNA double‐strand breaks (DSBs) generated by Crispr/Cas9 system, the homologous recombination efficiency was up to 11% and 16% in two mESC lines TC1 and v6.5, respectively. Overall, we obtained a total of 27 mESC clones with heterozygous hmTert/mTert alleles and three clones with homozygous hmTert alleles. DSBs induced by Crispr/Cas9 cleavages also caused high rates of genomic DNA deletions and mutations at single‐guide RNA target sites. Our results indicated that the Crispr/Cas9 system significantly increased the efficiency of homologous recombination‐mediated gene editing over a large genomic region in mammalian cells, and also caused frequent mutations at unedited target sites. Overall, this strategy provides an efficient and feasible way for manipulating large chromosomal regions. Extremely low efficiency is a bottleneck for the manipulation of large chromosomal regions in genome editing by homologous recombination. In this study, the authors designed a strategy that allowed the modification of large segments of mouse genome by combining the traditional homologous recombination approach with Crispr/Cas9‐assisted genome cleavages. The data demonstrated the feasibility and efficiency of this strategy by successfully replacing an 18‐kb genomic region at the mTert locus with a 45‐kb chimeric hTERT/mTert fragment in mouse embryonic stem cells.</description><subject>Alleles</subject><subject>Cloning</subject><subject>CRISPR</subject><subject>Crispr/Cas9</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>Embryo cells</subject><subject>Genetic engineering</subject><subject>Genetic modification</subject><subject>Genomes</subject><subject>Homologous recombination</subject><subject>Homology</subject><subject>knock‐in</subject><subject>Mammalian cells</subject><subject>mESC</subject><subject>Mutation</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>TERT</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc9qFTEUh4NY7LW68AUk4MYupjfJTP7MRtBL1ULBTV2HTObM3JRMck1mKl0U-gg-o09i7G2LCq5CTr7zcU5-CL2i5IQSwtadm0-YbBr6BK0oaWVFWEueohUhRFQ1b9khep7zZblKJcQzdFizpmmlUit0s0ku79J6Y3L78_bHBL0zM_TYejBXZoSMB2Odd3Op4m2coo9jXDJOYOPUuWBmFwPul-TCiEcIMDuLIYwuANzV4oAN9iaNgO02FUGOk_GlfyyNL9DBYHyGl_fnEfr68fRi87k6__LpbPP-vLK8EbTqCeFd14Kk0naUD1xYRi2xlJOGMsFtK2pJlKWK8J4NktneMKGokNAby3l9hN7tvbulKytaCHMyXu-Sm0y61tE4_fdLcFs9xivd0prVjSqCt_eCFL8tkGc9uWzBexOgfIdmDRFccqpoQd_8g17GJYWyXqHqolOCtoU63lM2xZwTDI_DUKJ_h6pLqPou1MK-_nP6R_IhxQKs98B35-H6_yb94exir_wFidWu6g</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Zhang, Fan</creator><creator>Cheng, De</creator><creator>Wang, Shuwen</creator><creator>Zhu, Jiyue</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3712-6232</orcidid><orcidid>https://orcid.org/0000-0002-7186-6317</orcidid><orcidid>https://orcid.org/0000-0003-2171-0725</orcidid></search><sort><creationdate>202009</creationdate><title>Crispr/Cas9‐mediated cleavages facilitate homologous recombination during genetic engineering of a large chromosomal region</title><author>Zhang, Fan ; Cheng, De ; Wang, Shuwen ; Zhu, Jiyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5461-d005bb9e717cb15f56c21c0c15041265c963708c1805d2f72cda268167edac553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alleles</topic><topic>Cloning</topic><topic>CRISPR</topic><topic>Crispr/Cas9</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>Embryo cells</topic><topic>Genetic engineering</topic><topic>Genetic modification</topic><topic>Genomes</topic><topic>Homologous recombination</topic><topic>Homology</topic><topic>knock‐in</topic><topic>Mammalian cells</topic><topic>mESC</topic><topic>Mutation</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>TERT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Cheng, De</creatorcontrib><creatorcontrib>Wang, Shuwen</creatorcontrib><creatorcontrib>Zhu, Jiyue</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fan</au><au>Cheng, De</au><au>Wang, Shuwen</au><au>Zhu, Jiyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crispr/Cas9‐mediated cleavages facilitate homologous recombination during genetic engineering of a large chromosomal region</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2020-09</date><risdate>2020</risdate><volume>117</volume><issue>9</issue><spage>2816</spage><epage>2826</epage><pages>2816-2826</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>Homologous recombination over large genomic regions is difficult to achieve due to low efficiencies. Here, we report the successful engineering of a humanized mTert allele, hmTert, in the mouse genome by replacing an 18.1‐kb genomic region around the mTert gene with a recombinant fragment of over 45.5 kb, using homologous recombination facilitated by the Crispr/Cas9 technology, in mouse embryonic stem cells (mESCs). In our experiments, with DNA double‐strand breaks (DSBs) generated by Crispr/Cas9 system, the homologous recombination efficiency was up to 11% and 16% in two mESC lines TC1 and v6.5, respectively. Overall, we obtained a total of 27 mESC clones with heterozygous hmTert/mTert alleles and three clones with homozygous hmTert alleles. DSBs induced by Crispr/Cas9 cleavages also caused high rates of genomic DNA deletions and mutations at single‐guide RNA target sites. Our results indicated that the Crispr/Cas9 system significantly increased the efficiency of homologous recombination‐mediated gene editing over a large genomic region in mammalian cells, and also caused frequent mutations at unedited target sites. Overall, this strategy provides an efficient and feasible way for manipulating large chromosomal regions. Extremely low efficiency is a bottleneck for the manipulation of large chromosomal regions in genome editing by homologous recombination. In this study, the authors designed a strategy that allowed the modification of large segments of mouse genome by combining the traditional homologous recombination approach with Crispr/Cas9‐assisted genome cleavages. The data demonstrated the feasibility and efficiency of this strategy by successfully replacing an 18‐kb genomic region at the mTert locus with a 45‐kb chimeric hTERT/mTert fragment in mouse embryonic stem cells.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32449788</pmid><doi>10.1002/bit.27441</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3712-6232</orcidid><orcidid>https://orcid.org/0000-0002-7186-6317</orcidid><orcidid>https://orcid.org/0000-0003-2171-0725</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2020-09, Vol.117 (9), p.2816-2826
issn 0006-3592
1097-0290
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9132348
source Wiley Journals
subjects Alleles
Cloning
CRISPR
Crispr/Cas9
Deoxyribonucleic acid
DNA
DNA damage
Embryo cells
Genetic engineering
Genetic modification
Genomes
Homologous recombination
Homology
knock‐in
Mammalian cells
mESC
Mutation
Ribonucleic acid
RNA
Stem cell transplantation
Stem cells
TERT
title Crispr/Cas9‐mediated cleavages facilitate homologous recombination during genetic engineering of a large chromosomal region
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crispr/Cas9%E2%80%90mediated%20cleavages%20facilitate%20homologous%20recombination%20during%20genetic%20engineering%20of%20a%20large%20chromosomal%20region&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Zhang,%20Fan&rft.date=2020-09&rft.volume=117&rft.issue=9&rft.spage=2816&rft.epage=2826&rft.pages=2816-2826&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.27441&rft_dat=%3Cproquest_pubme%3E2433238619%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2433238619&rft_id=info:pmid/32449788&rfr_iscdi=true