Crosstalk between macrophage-derived PGE2 and tumor UHRF1 drives hepatocellular carcinoma progression
Background: Tumor-associated macrophages (TAMs) and dysregulated tumor epigenetics contribute to hepatocellular carcinoma (HCC) progression. However, the mechanistic interactions between TAMs and tumor epigenetics remain poorly understood.Methods: Immunohistochemistry and multiplexed fluorescence st...
Gespeichert in:
Veröffentlicht in: | Theranostics 2022-01, Vol.12 (8), p.3776-3793 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3793 |
---|---|
container_issue | 8 |
container_start_page | 3776 |
container_title | Theranostics |
container_volume | 12 |
creator | Zhang, Jian Zhang, Hongyan Ding, Xiuli Hu, Jia Li, Yongkui Zhang, Jinxiang Wang, Hui Qi, Shanshan Xie, Aqing Shi, Jie Mengxi Xiang Yawen Bin Wang, Guobin Wang, Lin Wang, Zheng |
description | Background: Tumor-associated macrophages (TAMs) and dysregulated tumor epigenetics contribute to hepatocellular carcinoma (HCC) progression. However, the mechanistic interactions between TAMs and tumor epigenetics remain poorly understood.Methods: Immunohistochemistry and multiplexed fluorescence staining were performed to evaluate the correlation between TAMs numbers and UHRF1 expression in human HCC tissues. PGE2 neutralizing antibody and COX-2 inhibitor were used to analyze the regulation of TAMs isolated from HCC tissues on UHRF1 expression. Multiple microRNA prediction programs were employed to identify microRNAs that target UHRF1 3'UTR. Luciferase reporter assay was applied to evaluate the regulation of miR-520d on UHRF1 expression. Chromatin immunoprecipitation (ChIP) assays were performed to assess the abundance of H3K9me2 in the KLF6 promoter and DNMT1 in the CSF1 promoter regulated by UHRF1. The functional roles of TAM-mediated oncogenic network in HCC progression were verified by in vitro colony formation assays, in vivo xenograft experiments and analysis of clinical samples.Results: Here, we find that TAMs induce and maintain high levels of HCC UHRF1, an oncogenic epigenetic regulator. Mechanistically, TAM-derived PGE2 stimulates UHRF1 expression by repressing miR-520d that targets the 3'-UTR of UHRF1 mRNA. In consequence, upregulated UHRF1 methylates H3K9 to diminish tumor KLF6 expression, a tumor inhibitory transcriptional factor that directly transcribes miR-520d. PGE2 reduces KLF6 occupancy in the promoter of miR-520d, dampens miR-520d expression, and sustains robust UHRF1 expression. Moreover, UHRF1 promotes CSF1 expression by inducing DNA hypomethylation of the CSF1 promoter and supports TAM accumulation.Conclusions: Capitalizing on studies on HCC cells and tissues, animal models, and clinical information, we reveal a previously unappreciated TAM-mediated oncogenic network via multiple reciprocal enforcing molecular nodes. Targeting this network may be an approach to treat HCC patients. |
doi_str_mv | 10.7150/thno.69494 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9131282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760869509</sourcerecordid><originalsourceid>FETCH-LOGICAL-p307t-33508778c35ec23752fe305e1aff061329017b88fa0a5c517c6d8d4f085cc1b73</originalsourceid><addsrcrecordid>eNpdj8FKxDAURYMgzqBu_IKAGzfVl6Rp0o0gg6OCoIizLmn6Oq22SU3aEf_eirPRu7mLczlwCTljcKmYhKuxcf4yy9M8PSBLpoVOVJbCgpzG-AZzUuA5y4_IQshsBgqWBFfBxzia7p2WOH4iOtobG_zQmC0mFYZ2hxV9vrvl1LiKjlPvA93cv6wZrX5YpA0OZvQWu27qTKDWBNs63xs6BL8NGGPr3Qk5rE0X8XTfx2Szvn1d3SePT3cPq5vHZBCgxkQICVopbYVEy4WSvEYBEpmpa8iY4DkwVWpdGzDSSqZsVukqrUFLa1mpxDG5_vUOU9ljZdGNwXTFENrehK_Cm7b4S1zbFFu_K3ImGNd8FlzsBcF_TBjHom_jzzfj0E-x4JlKAbRWME_P_03f_BTcfK_gKgOd5RJy8Q2GUH2E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760869509</pqid></control><display><type>article</type><title>Crosstalk between macrophage-derived PGE2 and tumor UHRF1 drives hepatocellular carcinoma progression</title><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhang, Jian ; Zhang, Hongyan ; Ding, Xiuli ; Hu, Jia ; Li, Yongkui ; Zhang, Jinxiang ; Wang, Hui ; Qi, Shanshan ; Xie, Aqing ; Shi, Jie ; Mengxi Xiang ; Yawen Bin ; Wang, Guobin ; Wang, Lin ; Wang, Zheng</creator><creatorcontrib>Zhang, Jian ; Zhang, Hongyan ; Ding, Xiuli ; Hu, Jia ; Li, Yongkui ; Zhang, Jinxiang ; Wang, Hui ; Qi, Shanshan ; Xie, Aqing ; Shi, Jie ; Mengxi Xiang ; Yawen Bin ; Wang, Guobin ; Wang, Lin ; Wang, Zheng</creatorcontrib><description>Background: Tumor-associated macrophages (TAMs) and dysregulated tumor epigenetics contribute to hepatocellular carcinoma (HCC) progression. However, the mechanistic interactions between TAMs and tumor epigenetics remain poorly understood.Methods: Immunohistochemistry and multiplexed fluorescence staining were performed to evaluate the correlation between TAMs numbers and UHRF1 expression in human HCC tissues. PGE2 neutralizing antibody and COX-2 inhibitor were used to analyze the regulation of TAMs isolated from HCC tissues on UHRF1 expression. Multiple microRNA prediction programs were employed to identify microRNAs that target UHRF1 3'UTR. Luciferase reporter assay was applied to evaluate the regulation of miR-520d on UHRF1 expression. Chromatin immunoprecipitation (ChIP) assays were performed to assess the abundance of H3K9me2 in the KLF6 promoter and DNMT1 in the CSF1 promoter regulated by UHRF1. The functional roles of TAM-mediated oncogenic network in HCC progression were verified by in vitro colony formation assays, in vivo xenograft experiments and analysis of clinical samples.Results: Here, we find that TAMs induce and maintain high levels of HCC UHRF1, an oncogenic epigenetic regulator. Mechanistically, TAM-derived PGE2 stimulates UHRF1 expression by repressing miR-520d that targets the 3'-UTR of UHRF1 mRNA. In consequence, upregulated UHRF1 methylates H3K9 to diminish tumor KLF6 expression, a tumor inhibitory transcriptional factor that directly transcribes miR-520d. PGE2 reduces KLF6 occupancy in the promoter of miR-520d, dampens miR-520d expression, and sustains robust UHRF1 expression. Moreover, UHRF1 promotes CSF1 expression by inducing DNA hypomethylation of the CSF1 promoter and supports TAM accumulation.Conclusions: Capitalizing on studies on HCC cells and tissues, animal models, and clinical information, we reveal a previously unappreciated TAM-mediated oncogenic network via multiple reciprocal enforcing molecular nodes. Targeting this network may be an approach to treat HCC patients.</description><identifier>EISSN: 1838-7640</identifier><identifier>DOI: 10.7150/thno.69494</identifier><identifier>PMID: 35664070</identifier><language>eng</language><publisher>Wyoming: Ivyspring International Publisher Pty Ltd</publisher><subject>Antibodies ; Biotechnology ; DNA methylation ; Epigenetics ; Gene expression ; Genomes ; Laboratory animals ; Liver cancer ; Pore size ; Research Paper ; Survival analysis ; Tumors</subject><ispartof>Theranostics, 2022-01, Vol.12 (8), p.3776-3793</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9131282/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9131282/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids></links><search><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zhang, Hongyan</creatorcontrib><creatorcontrib>Ding, Xiuli</creatorcontrib><creatorcontrib>Hu, Jia</creatorcontrib><creatorcontrib>Li, Yongkui</creatorcontrib><creatorcontrib>Zhang, Jinxiang</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Qi, Shanshan</creatorcontrib><creatorcontrib>Xie, Aqing</creatorcontrib><creatorcontrib>Shi, Jie</creatorcontrib><creatorcontrib>Mengxi Xiang</creatorcontrib><creatorcontrib>Yawen Bin</creatorcontrib><creatorcontrib>Wang, Guobin</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Wang, Zheng</creatorcontrib><title>Crosstalk between macrophage-derived PGE2 and tumor UHRF1 drives hepatocellular carcinoma progression</title><title>Theranostics</title><description>Background: Tumor-associated macrophages (TAMs) and dysregulated tumor epigenetics contribute to hepatocellular carcinoma (HCC) progression. However, the mechanistic interactions between TAMs and tumor epigenetics remain poorly understood.Methods: Immunohistochemistry and multiplexed fluorescence staining were performed to evaluate the correlation between TAMs numbers and UHRF1 expression in human HCC tissues. PGE2 neutralizing antibody and COX-2 inhibitor were used to analyze the regulation of TAMs isolated from HCC tissues on UHRF1 expression. Multiple microRNA prediction programs were employed to identify microRNAs that target UHRF1 3'UTR. Luciferase reporter assay was applied to evaluate the regulation of miR-520d on UHRF1 expression. Chromatin immunoprecipitation (ChIP) assays were performed to assess the abundance of H3K9me2 in the KLF6 promoter and DNMT1 in the CSF1 promoter regulated by UHRF1. The functional roles of TAM-mediated oncogenic network in HCC progression were verified by in vitro colony formation assays, in vivo xenograft experiments and analysis of clinical samples.Results: Here, we find that TAMs induce and maintain high levels of HCC UHRF1, an oncogenic epigenetic regulator. Mechanistically, TAM-derived PGE2 stimulates UHRF1 expression by repressing miR-520d that targets the 3'-UTR of UHRF1 mRNA. In consequence, upregulated UHRF1 methylates H3K9 to diminish tumor KLF6 expression, a tumor inhibitory transcriptional factor that directly transcribes miR-520d. PGE2 reduces KLF6 occupancy in the promoter of miR-520d, dampens miR-520d expression, and sustains robust UHRF1 expression. Moreover, UHRF1 promotes CSF1 expression by inducing DNA hypomethylation of the CSF1 promoter and supports TAM accumulation.Conclusions: Capitalizing on studies on HCC cells and tissues, animal models, and clinical information, we reveal a previously unappreciated TAM-mediated oncogenic network via multiple reciprocal enforcing molecular nodes. Targeting this network may be an approach to treat HCC patients.</description><subject>Antibodies</subject><subject>Biotechnology</subject><subject>DNA methylation</subject><subject>Epigenetics</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Laboratory animals</subject><subject>Liver cancer</subject><subject>Pore size</subject><subject>Research Paper</subject><subject>Survival analysis</subject><subject>Tumors</subject><issn>1838-7640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdj8FKxDAURYMgzqBu_IKAGzfVl6Rp0o0gg6OCoIizLmn6Oq22SU3aEf_eirPRu7mLczlwCTljcKmYhKuxcf4yy9M8PSBLpoVOVJbCgpzG-AZzUuA5y4_IQshsBgqWBFfBxzia7p2WOH4iOtobG_zQmC0mFYZ2hxV9vrvl1LiKjlPvA93cv6wZrX5YpA0OZvQWu27qTKDWBNs63xs6BL8NGGPr3Qk5rE0X8XTfx2Szvn1d3SePT3cPq5vHZBCgxkQICVopbYVEy4WSvEYBEpmpa8iY4DkwVWpdGzDSSqZsVukqrUFLa1mpxDG5_vUOU9ljZdGNwXTFENrehK_Cm7b4S1zbFFu_K3ImGNd8FlzsBcF_TBjHom_jzzfj0E-x4JlKAbRWME_P_03f_BTcfK_gKgOd5RJy8Q2GUH2E</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Zhang, Jian</creator><creator>Zhang, Hongyan</creator><creator>Ding, Xiuli</creator><creator>Hu, Jia</creator><creator>Li, Yongkui</creator><creator>Zhang, Jinxiang</creator><creator>Wang, Hui</creator><creator>Qi, Shanshan</creator><creator>Xie, Aqing</creator><creator>Shi, Jie</creator><creator>Mengxi Xiang</creator><creator>Yawen Bin</creator><creator>Wang, Guobin</creator><creator>Wang, Lin</creator><creator>Wang, Zheng</creator><general>Ivyspring International Publisher Pty Ltd</general><general>Ivyspring International Publisher</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220101</creationdate><title>Crosstalk between macrophage-derived PGE2 and tumor UHRF1 drives hepatocellular carcinoma progression</title><author>Zhang, Jian ; Zhang, Hongyan ; Ding, Xiuli ; Hu, Jia ; Li, Yongkui ; Zhang, Jinxiang ; Wang, Hui ; Qi, Shanshan ; Xie, Aqing ; Shi, Jie ; Mengxi Xiang ; Yawen Bin ; Wang, Guobin ; Wang, Lin ; Wang, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p307t-33508778c35ec23752fe305e1aff061329017b88fa0a5c517c6d8d4f085cc1b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antibodies</topic><topic>Biotechnology</topic><topic>DNA methylation</topic><topic>Epigenetics</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Laboratory animals</topic><topic>Liver cancer</topic><topic>Pore size</topic><topic>Research Paper</topic><topic>Survival analysis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zhang, Hongyan</creatorcontrib><creatorcontrib>Ding, Xiuli</creatorcontrib><creatorcontrib>Hu, Jia</creatorcontrib><creatorcontrib>Li, Yongkui</creatorcontrib><creatorcontrib>Zhang, Jinxiang</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Qi, Shanshan</creatorcontrib><creatorcontrib>Xie, Aqing</creatorcontrib><creatorcontrib>Shi, Jie</creatorcontrib><creatorcontrib>Mengxi Xiang</creatorcontrib><creatorcontrib>Yawen Bin</creatorcontrib><creatorcontrib>Wang, Guobin</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Wang, Zheng</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theranostics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jian</au><au>Zhang, Hongyan</au><au>Ding, Xiuli</au><au>Hu, Jia</au><au>Li, Yongkui</au><au>Zhang, Jinxiang</au><au>Wang, Hui</au><au>Qi, Shanshan</au><au>Xie, Aqing</au><au>Shi, Jie</au><au>Mengxi Xiang</au><au>Yawen Bin</au><au>Wang, Guobin</au><au>Wang, Lin</au><au>Wang, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crosstalk between macrophage-derived PGE2 and tumor UHRF1 drives hepatocellular carcinoma progression</atitle><jtitle>Theranostics</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>12</volume><issue>8</issue><spage>3776</spage><epage>3793</epage><pages>3776-3793</pages><eissn>1838-7640</eissn><abstract>Background: Tumor-associated macrophages (TAMs) and dysregulated tumor epigenetics contribute to hepatocellular carcinoma (HCC) progression. However, the mechanistic interactions between TAMs and tumor epigenetics remain poorly understood.Methods: Immunohistochemistry and multiplexed fluorescence staining were performed to evaluate the correlation between TAMs numbers and UHRF1 expression in human HCC tissues. PGE2 neutralizing antibody and COX-2 inhibitor were used to analyze the regulation of TAMs isolated from HCC tissues on UHRF1 expression. Multiple microRNA prediction programs were employed to identify microRNAs that target UHRF1 3'UTR. Luciferase reporter assay was applied to evaluate the regulation of miR-520d on UHRF1 expression. Chromatin immunoprecipitation (ChIP) assays were performed to assess the abundance of H3K9me2 in the KLF6 promoter and DNMT1 in the CSF1 promoter regulated by UHRF1. The functional roles of TAM-mediated oncogenic network in HCC progression were verified by in vitro colony formation assays, in vivo xenograft experiments and analysis of clinical samples.Results: Here, we find that TAMs induce and maintain high levels of HCC UHRF1, an oncogenic epigenetic regulator. Mechanistically, TAM-derived PGE2 stimulates UHRF1 expression by repressing miR-520d that targets the 3'-UTR of UHRF1 mRNA. In consequence, upregulated UHRF1 methylates H3K9 to diminish tumor KLF6 expression, a tumor inhibitory transcriptional factor that directly transcribes miR-520d. PGE2 reduces KLF6 occupancy in the promoter of miR-520d, dampens miR-520d expression, and sustains robust UHRF1 expression. Moreover, UHRF1 promotes CSF1 expression by inducing DNA hypomethylation of the CSF1 promoter and supports TAM accumulation.Conclusions: Capitalizing on studies on HCC cells and tissues, animal models, and clinical information, we reveal a previously unappreciated TAM-mediated oncogenic network via multiple reciprocal enforcing molecular nodes. Targeting this network may be an approach to treat HCC patients.</abstract><cop>Wyoming</cop><pub>Ivyspring International Publisher Pty Ltd</pub><pmid>35664070</pmid><doi>10.7150/thno.69494</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1838-7640 |
ispartof | Theranostics, 2022-01, Vol.12 (8), p.3776-3793 |
issn | 1838-7640 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9131282 |
source | PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Antibodies Biotechnology DNA methylation Epigenetics Gene expression Genomes Laboratory animals Liver cancer Pore size Research Paper Survival analysis Tumors |
title | Crosstalk between macrophage-derived PGE2 and tumor UHRF1 drives hepatocellular carcinoma progression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crosstalk%20between%20macrophage-derived%20PGE2%20and%20tumor%20UHRF1%20drives%20hepatocellular%20carcinoma%20progression&rft.jtitle=Theranostics&rft.au=Zhang,%20Jian&rft.date=2022-01-01&rft.volume=12&rft.issue=8&rft.spage=3776&rft.epage=3793&rft.pages=3776-3793&rft.eissn=1838-7640&rft_id=info:doi/10.7150/thno.69494&rft_dat=%3Cproquest_pubme%3E2760869509%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760869509&rft_id=info:pmid/35664070&rfr_iscdi=true |