Development and optimization of a Barley stripe mosaic virus‐mediated gene editing system to improve Fusarium head blight resistance in wheat

Unfortunately, most wheat genotypes have extremely low callus induction and regeneration efficiency, which limits the application of genome editing in wheat breeding. [...]a new gRNA delivery system that bypasses the tissue culture is critical to the successful use of gene editing in wheat breeding....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2022-06, Vol.20 (6), p.1018-1020
Hauptverfasser: Chen, Hui, Su, Zhenqi, Tian, Bin, Liu, Yang, Pang, Yuhui, Kavetskyi, Volodymyr, Trick, Harold N., Bai, Guihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1020
container_issue 6
container_start_page 1018
container_title Plant biotechnology journal
container_volume 20
creator Chen, Hui
Su, Zhenqi
Tian, Bin
Liu, Yang
Pang, Yuhui
Kavetskyi, Volodymyr
Trick, Harold N.
Bai, Guihua
description Unfortunately, most wheat genotypes have extremely low callus induction and regeneration efficiency, which limits the application of genome editing in wheat breeding. [...]a new gRNA delivery system that bypasses the tissue culture is critical to the successful use of gene editing in wheat breeding. Lanes 4 and 6 are the vector control and two mutants with TaHRC-specific cleavage bands (768 and 298 bp). (d) and (e) Edited In/del sequences at TaPDS and TaHRC target sites of the mutants. (f) Seedlings of a TaPDS albino mutant (left) and TaHRC mutant. (g) Sequence of edited and non-edited TaHRC in Bobwhite showing insertions in Mut01 (57 bp) and Mut02 (3 bp). (h) and (i) FHB symptoms and percentages of symptomatic spikelets (PSS) between the mutants and control. (j) Sequences of edited and non-edited TaHRC in Everest. (k) and (l) PSS and infected spikes of mutants and control. (m) Recovery rates of TaHRC mutants generated using TaHRC_sgRNA, TaHRC_sgRNA-mTaFT and TaHRC_sgRNA-tRNAIleu vectors. To expand the utility of this editing system in other wheat cultivars with low transformation efficiency, we transferred the Cas9 gene into a locally adapted winter wheat cultivar 'Everest' by crossing Everest to a Cas9-OE Bobwhite plant and selecting Cas9-OE Everest F2 progeny that carried homozygous Cas9 and the target gene.
doi_str_mv 10.1111/pbi.13819
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9129070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644947688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4439-fa10d975ba5ccfa5b58c1c452c0f666989212ca45fdb06c2cb33868f4b34d7293</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxiMEoqVw4AXQSFzoYdv4TxzngkRbWipVggOcLcdxdqdK7GA7W21PfQN4Rp4Ely0rQGIuntH89Gk-f0XxkpRHJNfx1OIRYZI0j4p9wkW9qEVFH-96zveKZzFelyUlohJPiz1WMS5pLfeLb2d2bQc_jdYl0K4DPyUc8VYn9A58DxpOdBjsBmIKOFkYfdRoYI1hjj_uvo-2Q51sB0vrLOQhoVtC3MRkR0gecJyCX1s4n6MOOI-wsrqDdsDlKkGwEWPSzlhABzd5lZ4XT3o9RPvi4T0ovpy__3z6YXH18eLy9N3VwnDOmkWvSdk1ddXqypheV20lDTG8oqbshRCNbCihRvOq79pSGGpaxqSQPW8Z72rasIPi7VZ3mtvswWT7QQ9qCjjqsFFeo_p743Clln6tGkKbsi6zwJsHgeC_zjYmNWI0dhi0s36OiuZvb3gtpMzo63_Qaz8Hl-1lSkhOWc14pg63lAk-xmD73TGkVPcxqxyz-hVzZl_9ef2O_J1rBo63wA3m7P6vpD6dXG4lfwKfGbZR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2668423734</pqid></control><display><type>article</type><title>Development and optimization of a Barley stripe mosaic virus‐mediated gene editing system to improve Fusarium head blight resistance in wheat</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Wiley Online Library All Journals</source><creator>Chen, Hui ; Su, Zhenqi ; Tian, Bin ; Liu, Yang ; Pang, Yuhui ; Kavetskyi, Volodymyr ; Trick, Harold N. ; Bai, Guihua</creator><creatorcontrib>Chen, Hui ; Su, Zhenqi ; Tian, Bin ; Liu, Yang ; Pang, Yuhui ; Kavetskyi, Volodymyr ; Trick, Harold N. ; Bai, Guihua</creatorcontrib><description>Unfortunately, most wheat genotypes have extremely low callus induction and regeneration efficiency, which limits the application of genome editing in wheat breeding. [...]a new gRNA delivery system that bypasses the tissue culture is critical to the successful use of gene editing in wheat breeding. Lanes 4 and 6 are the vector control and two mutants with TaHRC-specific cleavage bands (768 and 298 bp). (d) and (e) Edited In/del sequences at TaPDS and TaHRC target sites of the mutants. (f) Seedlings of a TaPDS albino mutant (left) and TaHRC mutant. (g) Sequence of edited and non-edited TaHRC in Bobwhite showing insertions in Mut01 (57 bp) and Mut02 (3 bp). (h) and (i) FHB symptoms and percentages of symptomatic spikelets (PSS) between the mutants and control. (j) Sequences of edited and non-edited TaHRC in Everest. (k) and (l) PSS and infected spikes of mutants and control. (m) Recovery rates of TaHRC mutants generated using TaHRC_sgRNA, TaHRC_sgRNA-mTaFT and TaHRC_sgRNA-tRNAIleu vectors. To expand the utility of this editing system in other wheat cultivars with low transformation efficiency, we transferred the Cas9 gene into a locally adapted winter wheat cultivar 'Everest' by crossing Everest to a Cas9-OE Bobwhite plant and selecting Cas9-OE Everest F2 progeny that carried homozygous Cas9 and the target gene.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.13819</identifier><identifier>PMID: 35348278</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Albinism ; Barley ; Blight ; Brief Communication ; Brief Communications ; BSMV‐mediated genome editing ; Callus ; CRISPR ; CRISPR/Cas9 ; Cultivars ; Disease resistance ; Efficiency ; Fhb1 ; Fusarium head blight ; Genes ; Genetic crosses ; Genetic modification ; Genome editing ; Genomes ; Genotypes ; gRNA ; Mutants ; Mutation ; Optimization ; Plant breeding ; Plant resistance ; Progeny ; Seedlings ; Tissue culture ; Wheat ; Winter wheat</subject><ispartof>Plant biotechnology journal, 2022-06, Vol.20 (6), p.1018-1020</ispartof><rights>2022 Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4439-fa10d975ba5ccfa5b58c1c452c0f666989212ca45fdb06c2cb33868f4b34d7293</citedby><cites>FETCH-LOGICAL-c4439-fa10d975ba5ccfa5b58c1c452c0f666989212ca45fdb06c2cb33868f4b34d7293</cites><orcidid>0000-0001-5255-5575 ; 0000-0002-5892-0251 ; 0000-0001-6050-0873 ; 0000-0002-1194-319X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.13819$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.13819$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35348278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Su, Zhenqi</creatorcontrib><creatorcontrib>Tian, Bin</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Pang, Yuhui</creatorcontrib><creatorcontrib>Kavetskyi, Volodymyr</creatorcontrib><creatorcontrib>Trick, Harold N.</creatorcontrib><creatorcontrib>Bai, Guihua</creatorcontrib><title>Development and optimization of a Barley stripe mosaic virus‐mediated gene editing system to improve Fusarium head blight resistance in wheat</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Unfortunately, most wheat genotypes have extremely low callus induction and regeneration efficiency, which limits the application of genome editing in wheat breeding. [...]a new gRNA delivery system that bypasses the tissue culture is critical to the successful use of gene editing in wheat breeding. Lanes 4 and 6 are the vector control and two mutants with TaHRC-specific cleavage bands (768 and 298 bp). (d) and (e) Edited In/del sequences at TaPDS and TaHRC target sites of the mutants. (f) Seedlings of a TaPDS albino mutant (left) and TaHRC mutant. (g) Sequence of edited and non-edited TaHRC in Bobwhite showing insertions in Mut01 (57 bp) and Mut02 (3 bp). (h) and (i) FHB symptoms and percentages of symptomatic spikelets (PSS) between the mutants and control. (j) Sequences of edited and non-edited TaHRC in Everest. (k) and (l) PSS and infected spikes of mutants and control. (m) Recovery rates of TaHRC mutants generated using TaHRC_sgRNA, TaHRC_sgRNA-mTaFT and TaHRC_sgRNA-tRNAIleu vectors. To expand the utility of this editing system in other wheat cultivars with low transformation efficiency, we transferred the Cas9 gene into a locally adapted winter wheat cultivar 'Everest' by crossing Everest to a Cas9-OE Bobwhite plant and selecting Cas9-OE Everest F2 progeny that carried homozygous Cas9 and the target gene.</description><subject>Albinism</subject><subject>Barley</subject><subject>Blight</subject><subject>Brief Communication</subject><subject>Brief Communications</subject><subject>BSMV‐mediated genome editing</subject><subject>Callus</subject><subject>CRISPR</subject><subject>CRISPR/Cas9</subject><subject>Cultivars</subject><subject>Disease resistance</subject><subject>Efficiency</subject><subject>Fhb1</subject><subject>Fusarium head blight</subject><subject>Genes</subject><subject>Genetic crosses</subject><subject>Genetic modification</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Genotypes</subject><subject>gRNA</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Plant breeding</subject><subject>Plant resistance</subject><subject>Progeny</subject><subject>Seedlings</subject><subject>Tissue culture</subject><subject>Wheat</subject><subject>Winter wheat</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc9u1DAQxiMEoqVw4AXQSFzoYdv4TxzngkRbWipVggOcLcdxdqdK7GA7W21PfQN4Rp4Ely0rQGIuntH89Gk-f0XxkpRHJNfx1OIRYZI0j4p9wkW9qEVFH-96zveKZzFelyUlohJPiz1WMS5pLfeLb2d2bQc_jdYl0K4DPyUc8VYn9A58DxpOdBjsBmIKOFkYfdRoYI1hjj_uvo-2Q51sB0vrLOQhoVtC3MRkR0gecJyCX1s4n6MOOI-wsrqDdsDlKkGwEWPSzlhABzd5lZ4XT3o9RPvi4T0ovpy__3z6YXH18eLy9N3VwnDOmkWvSdk1ddXqypheV20lDTG8oqbshRCNbCihRvOq79pSGGpaxqSQPW8Z72rasIPi7VZ3mtvswWT7QQ9qCjjqsFFeo_p743Clln6tGkKbsi6zwJsHgeC_zjYmNWI0dhi0s36OiuZvb3gtpMzo63_Qaz8Hl-1lSkhOWc14pg63lAk-xmD73TGkVPcxqxyz-hVzZl_9ef2O_J1rBo63wA3m7P6vpD6dXG4lfwKfGbZR</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Chen, Hui</creator><creator>Su, Zhenqi</creator><creator>Tian, Bin</creator><creator>Liu, Yang</creator><creator>Pang, Yuhui</creator><creator>Kavetskyi, Volodymyr</creator><creator>Trick, Harold N.</creator><creator>Bai, Guihua</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5255-5575</orcidid><orcidid>https://orcid.org/0000-0002-5892-0251</orcidid><orcidid>https://orcid.org/0000-0001-6050-0873</orcidid><orcidid>https://orcid.org/0000-0002-1194-319X</orcidid></search><sort><creationdate>202206</creationdate><title>Development and optimization of a Barley stripe mosaic virus‐mediated gene editing system to improve Fusarium head blight resistance in wheat</title><author>Chen, Hui ; Su, Zhenqi ; Tian, Bin ; Liu, Yang ; Pang, Yuhui ; Kavetskyi, Volodymyr ; Trick, Harold N. ; Bai, Guihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4439-fa10d975ba5ccfa5b58c1c452c0f666989212ca45fdb06c2cb33868f4b34d7293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Albinism</topic><topic>Barley</topic><topic>Blight</topic><topic>Brief Communication</topic><topic>Brief Communications</topic><topic>BSMV‐mediated genome editing</topic><topic>Callus</topic><topic>CRISPR</topic><topic>CRISPR/Cas9</topic><topic>Cultivars</topic><topic>Disease resistance</topic><topic>Efficiency</topic><topic>Fhb1</topic><topic>Fusarium head blight</topic><topic>Genes</topic><topic>Genetic crosses</topic><topic>Genetic modification</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Genotypes</topic><topic>gRNA</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Plant breeding</topic><topic>Plant resistance</topic><topic>Progeny</topic><topic>Seedlings</topic><topic>Tissue culture</topic><topic>Wheat</topic><topic>Winter wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Su, Zhenqi</creatorcontrib><creatorcontrib>Tian, Bin</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Pang, Yuhui</creatorcontrib><creatorcontrib>Kavetskyi, Volodymyr</creatorcontrib><creatorcontrib>Trick, Harold N.</creatorcontrib><creatorcontrib>Bai, Guihua</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hui</au><au>Su, Zhenqi</au><au>Tian, Bin</au><au>Liu, Yang</au><au>Pang, Yuhui</au><au>Kavetskyi, Volodymyr</au><au>Trick, Harold N.</au><au>Bai, Guihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and optimization of a Barley stripe mosaic virus‐mediated gene editing system to improve Fusarium head blight resistance in wheat</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2022-06</date><risdate>2022</risdate><volume>20</volume><issue>6</issue><spage>1018</spage><epage>1020</epage><pages>1018-1020</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Unfortunately, most wheat genotypes have extremely low callus induction and regeneration efficiency, which limits the application of genome editing in wheat breeding. [...]a new gRNA delivery system that bypasses the tissue culture is critical to the successful use of gene editing in wheat breeding. Lanes 4 and 6 are the vector control and two mutants with TaHRC-specific cleavage bands (768 and 298 bp). (d) and (e) Edited In/del sequences at TaPDS and TaHRC target sites of the mutants. (f) Seedlings of a TaPDS albino mutant (left) and TaHRC mutant. (g) Sequence of edited and non-edited TaHRC in Bobwhite showing insertions in Mut01 (57 bp) and Mut02 (3 bp). (h) and (i) FHB symptoms and percentages of symptomatic spikelets (PSS) between the mutants and control. (j) Sequences of edited and non-edited TaHRC in Everest. (k) and (l) PSS and infected spikes of mutants and control. (m) Recovery rates of TaHRC mutants generated using TaHRC_sgRNA, TaHRC_sgRNA-mTaFT and TaHRC_sgRNA-tRNAIleu vectors. To expand the utility of this editing system in other wheat cultivars with low transformation efficiency, we transferred the Cas9 gene into a locally adapted winter wheat cultivar 'Everest' by crossing Everest to a Cas9-OE Bobwhite plant and selecting Cas9-OE Everest F2 progeny that carried homozygous Cas9 and the target gene.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35348278</pmid><doi>10.1111/pbi.13819</doi><tpages>1020</tpages><orcidid>https://orcid.org/0000-0001-5255-5575</orcidid><orcidid>https://orcid.org/0000-0002-5892-0251</orcidid><orcidid>https://orcid.org/0000-0001-6050-0873</orcidid><orcidid>https://orcid.org/0000-0002-1194-319X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2022-06, Vol.20 (6), p.1018-1020
issn 1467-7644
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9129070
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Wiley Online Library All Journals
subjects Albinism
Barley
Blight
Brief Communication
Brief Communications
BSMV‐mediated genome editing
Callus
CRISPR
CRISPR/Cas9
Cultivars
Disease resistance
Efficiency
Fhb1
Fusarium head blight
Genes
Genetic crosses
Genetic modification
Genome editing
Genomes
Genotypes
gRNA
Mutants
Mutation
Optimization
Plant breeding
Plant resistance
Progeny
Seedlings
Tissue culture
Wheat
Winter wheat
title Development and optimization of a Barley stripe mosaic virus‐mediated gene editing system to improve Fusarium head blight resistance in wheat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20optimization%20of%20a%20Barley%20stripe%20mosaic%20virus%E2%80%90mediated%20gene%20editing%20system%20to%20improve%20Fusarium%20head%20blight%20resistance%20in%20wheat&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Chen,%20Hui&rft.date=2022-06&rft.volume=20&rft.issue=6&rft.spage=1018&rft.epage=1020&rft.pages=1018-1020&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.13819&rft_dat=%3Cproquest_pubme%3E2644947688%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2668423734&rft_id=info:pmid/35348278&rfr_iscdi=true