Stimulation of frontal pathways disrupts hand muscle control during object manipulation
The activity of frontal motor areas during hand-object interaction is coordinated by dense communication along specific white matter pathways. This architecture allows the continuous shaping of voluntary motor output but, despite extensive investigation in non-human primate studies, remains poorly u...
Gespeichert in:
Veröffentlicht in: | Brain (London, England : 1878) England : 1878), 2022-05, Vol.145 (4), p.1535-1550 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1550 |
---|---|
container_issue | 4 |
container_start_page | 1535 |
container_title | Brain (London, England : 1878) |
container_volume | 145 |
creator | Viganò, Luca Howells, Henrietta Rossi, Marco Rabuffetti, Marco Puglisi, Guglielmo Leonetti, Antonella Bellacicca, Andrea Conti Nibali, Marco Gay, Lorenzo Sciortino, Tommaso Cerri, Gabriella Bello, Lorenzo Fornia, Luca |
description | The activity of frontal motor areas during hand-object interaction is coordinated by dense communication along specific white matter pathways. This architecture allows the continuous shaping of voluntary motor output but, despite extensive investigation in non-human primate studies, remains poorly understood in humans. Disclosure of this system is crucial for predicting and treatment of motor deficits after brain lesions. For this purpose, we investigated the effect of direct electrical stimulation on white matter pathways within the frontal lobe on hand-object manipulation. This was tested in 34 patients (15 left hemisphere, mean age 42 years, 17 male, 15 with tractography) undergoing awake neurosurgery for frontal lobe tumour removal with the aid of the brain mapping technique. The stimulation outcome was quantified based on hand-muscle activity required by task execution. The white matter pathways responsive to stimulation with an interference on muscles were identified by means of probabilistic density estimation of stimulated sites, tract-based lesion-symptom (disconnectome) analysis and diffusion tractography on the single patient level. Finally, we assessed the effect of permanent tract disconnection on motor outcome in the immediate postoperative period using a multivariate lesion-symptom mapping approach. The analysis showed that stimulation disrupted hand-muscle activity during task execution at 66 sites within the white matter below dorsal and ventral premotor regions. Two different EMG interference patterns associated with different structural architectures emerged: (i) an 'arrest' pattern, characterized by complete impairment of muscle activity associated with an abrupt task interruption, occurred when stimulating a white matter area below the dorsal premotor region. Local middle U-shaped fibres, superior fronto-striatal, corticospinal and dorsal fronto-parietal fibres intersected with this region. (ii) a 'clumsy' pattern, characterized by partial disruption of muscle activity associated with movement slowdown and/or uncoordinated finger movements, occurred when stimulating a white matter area below the ventral premotor region. Ventral fronto-parietal and inferior fronto-striatal tracts intersected with this region. Finally, only resections partially including the dorsal white matter region surrounding the supplementary motor area were associated with transient upper-limb deficit (P = 0.05; 5000 permutations). Overall, the results identify two |
doi_str_mv | 10.1093/brain/awab379 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9128819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580693019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-1c693ed005bbb638e3a26ef90c7b7a23c92df8ef944b986fd920f833ee192c5b3</originalsourceid><addsrcrecordid>eNpVkU1LxDAURYMoOo4u3UqWbuq8JG0m2QgifoHgQsVlSNJ0JtI2NWkV_711Zhx0FXg5nHd5F6ETAucEJJuZqH0705_asLncQROSc8goKfgumgAAz4Qs4AAdpvQGQHJG-T46YDmnLKcwQa9PvW-GWvc-tDhUuIqh7XWNO90vP_VXwqVPcej6hJe6LXEzJFs7bEcohhqXQ_TtAgfz5myPG936buM6QnuVrpM73rxT9HJz_Xx1lz083t5fXT5klol5nxHLJXMlQGGM4Uw4pil3lQQ7N3NNmZW0rMQ4yHMjBa9KSaESjDlHJLWFYVN0sfZ2g2lcad0YTNeqi77R8UsF7dX_n9Yv1SJ8KEmoEESOgrONIIb3waVeNT5ZV9e6dWFIihYCxoywQrM1amNIKbpqu4aA-ilDrcpQmzJG_vRvti39e332DcAOixk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580693019</pqid></control><display><type>article</type><title>Stimulation of frontal pathways disrupts hand muscle control during object manipulation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Viganò, Luca ; Howells, Henrietta ; Rossi, Marco ; Rabuffetti, Marco ; Puglisi, Guglielmo ; Leonetti, Antonella ; Bellacicca, Andrea ; Conti Nibali, Marco ; Gay, Lorenzo ; Sciortino, Tommaso ; Cerri, Gabriella ; Bello, Lorenzo ; Fornia, Luca</creator><creatorcontrib>Viganò, Luca ; Howells, Henrietta ; Rossi, Marco ; Rabuffetti, Marco ; Puglisi, Guglielmo ; Leonetti, Antonella ; Bellacicca, Andrea ; Conti Nibali, Marco ; Gay, Lorenzo ; Sciortino, Tommaso ; Cerri, Gabriella ; Bello, Lorenzo ; Fornia, Luca</creatorcontrib><description>The activity of frontal motor areas during hand-object interaction is coordinated by dense communication along specific white matter pathways. This architecture allows the continuous shaping of voluntary motor output but, despite extensive investigation in non-human primate studies, remains poorly understood in humans. Disclosure of this system is crucial for predicting and treatment of motor deficits after brain lesions. For this purpose, we investigated the effect of direct electrical stimulation on white matter pathways within the frontal lobe on hand-object manipulation. This was tested in 34 patients (15 left hemisphere, mean age 42 years, 17 male, 15 with tractography) undergoing awake neurosurgery for frontal lobe tumour removal with the aid of the brain mapping technique. The stimulation outcome was quantified based on hand-muscle activity required by task execution. The white matter pathways responsive to stimulation with an interference on muscles were identified by means of probabilistic density estimation of stimulated sites, tract-based lesion-symptom (disconnectome) analysis and diffusion tractography on the single patient level. Finally, we assessed the effect of permanent tract disconnection on motor outcome in the immediate postoperative period using a multivariate lesion-symptom mapping approach. The analysis showed that stimulation disrupted hand-muscle activity during task execution at 66 sites within the white matter below dorsal and ventral premotor regions. Two different EMG interference patterns associated with different structural architectures emerged: (i) an 'arrest' pattern, characterized by complete impairment of muscle activity associated with an abrupt task interruption, occurred when stimulating a white matter area below the dorsal premotor region. Local middle U-shaped fibres, superior fronto-striatal, corticospinal and dorsal fronto-parietal fibres intersected with this region. (ii) a 'clumsy' pattern, characterized by partial disruption of muscle activity associated with movement slowdown and/or uncoordinated finger movements, occurred when stimulating a white matter area below the ventral premotor region. Ventral fronto-parietal and inferior fronto-striatal tracts intersected with this region. Finally, only resections partially including the dorsal white matter region surrounding the supplementary motor area were associated with transient upper-limb deficit (P = 0.05; 5000 permutations). Overall, the results identify two distinct frontal white matter regions possibly mediating different aspects of hand-object interaction via distinct sets of structural connectivity. We suggest the dorsal region, associated with arrest pattern and postoperative immediate motor deficits, to be functionally proximal to motor output implementation, while the ventral region may be involved in sensorimotor integration required for task execution.</description><identifier>ISSN: 0006-8950</identifier><identifier>EISSN: 1460-2156</identifier><identifier>DOI: 10.1093/brain/awab379</identifier><identifier>PMID: 34623420</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Original</subject><ispartof>Brain (London, England : 1878), 2022-05, Vol.145 (4), p.1535-1550</ispartof><rights>The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain.</rights><rights>The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-1c693ed005bbb638e3a26ef90c7b7a23c92df8ef944b986fd920f833ee192c5b3</citedby><cites>FETCH-LOGICAL-c387t-1c693ed005bbb638e3a26ef90c7b7a23c92df8ef944b986fd920f833ee192c5b3</cites><orcidid>0000-0002-7690-1679 ; 0000-0003-3178-1957 ; 0000-0001-7191-2822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34623420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Viganò, Luca</creatorcontrib><creatorcontrib>Howells, Henrietta</creatorcontrib><creatorcontrib>Rossi, Marco</creatorcontrib><creatorcontrib>Rabuffetti, Marco</creatorcontrib><creatorcontrib>Puglisi, Guglielmo</creatorcontrib><creatorcontrib>Leonetti, Antonella</creatorcontrib><creatorcontrib>Bellacicca, Andrea</creatorcontrib><creatorcontrib>Conti Nibali, Marco</creatorcontrib><creatorcontrib>Gay, Lorenzo</creatorcontrib><creatorcontrib>Sciortino, Tommaso</creatorcontrib><creatorcontrib>Cerri, Gabriella</creatorcontrib><creatorcontrib>Bello, Lorenzo</creatorcontrib><creatorcontrib>Fornia, Luca</creatorcontrib><title>Stimulation of frontal pathways disrupts hand muscle control during object manipulation</title><title>Brain (London, England : 1878)</title><addtitle>Brain</addtitle><description>The activity of frontal motor areas during hand-object interaction is coordinated by dense communication along specific white matter pathways. This architecture allows the continuous shaping of voluntary motor output but, despite extensive investigation in non-human primate studies, remains poorly understood in humans. Disclosure of this system is crucial for predicting and treatment of motor deficits after brain lesions. For this purpose, we investigated the effect of direct electrical stimulation on white matter pathways within the frontal lobe on hand-object manipulation. This was tested in 34 patients (15 left hemisphere, mean age 42 years, 17 male, 15 with tractography) undergoing awake neurosurgery for frontal lobe tumour removal with the aid of the brain mapping technique. The stimulation outcome was quantified based on hand-muscle activity required by task execution. The white matter pathways responsive to stimulation with an interference on muscles were identified by means of probabilistic density estimation of stimulated sites, tract-based lesion-symptom (disconnectome) analysis and diffusion tractography on the single patient level. Finally, we assessed the effect of permanent tract disconnection on motor outcome in the immediate postoperative period using a multivariate lesion-symptom mapping approach. The analysis showed that stimulation disrupted hand-muscle activity during task execution at 66 sites within the white matter below dorsal and ventral premotor regions. Two different EMG interference patterns associated with different structural architectures emerged: (i) an 'arrest' pattern, characterized by complete impairment of muscle activity associated with an abrupt task interruption, occurred when stimulating a white matter area below the dorsal premotor region. Local middle U-shaped fibres, superior fronto-striatal, corticospinal and dorsal fronto-parietal fibres intersected with this region. (ii) a 'clumsy' pattern, characterized by partial disruption of muscle activity associated with movement slowdown and/or uncoordinated finger movements, occurred when stimulating a white matter area below the ventral premotor region. Ventral fronto-parietal and inferior fronto-striatal tracts intersected with this region. Finally, only resections partially including the dorsal white matter region surrounding the supplementary motor area were associated with transient upper-limb deficit (P = 0.05; 5000 permutations). Overall, the results identify two distinct frontal white matter regions possibly mediating different aspects of hand-object interaction via distinct sets of structural connectivity. We suggest the dorsal region, associated with arrest pattern and postoperative immediate motor deficits, to be functionally proximal to motor output implementation, while the ventral region may be involved in sensorimotor integration required for task execution.</description><subject>Original</subject><issn>0006-8950</issn><issn>1460-2156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkU1LxDAURYMoOo4u3UqWbuq8JG0m2QgifoHgQsVlSNJ0JtI2NWkV_711Zhx0FXg5nHd5F6ETAucEJJuZqH0705_asLncQROSc8goKfgumgAAz4Qs4AAdpvQGQHJG-T46YDmnLKcwQa9PvW-GWvc-tDhUuIqh7XWNO90vP_VXwqVPcej6hJe6LXEzJFs7bEcohhqXQ_TtAgfz5myPG936buM6QnuVrpM73rxT9HJz_Xx1lz083t5fXT5klol5nxHLJXMlQGGM4Uw4pil3lQQ7N3NNmZW0rMQ4yHMjBa9KSaESjDlHJLWFYVN0sfZ2g2lcad0YTNeqi77R8UsF7dX_n9Yv1SJ8KEmoEESOgrONIIb3waVeNT5ZV9e6dWFIihYCxoywQrM1amNIKbpqu4aA-ilDrcpQmzJG_vRvti39e332DcAOixk</recordid><startdate>20220524</startdate><enddate>20220524</enddate><creator>Viganò, Luca</creator><creator>Howells, Henrietta</creator><creator>Rossi, Marco</creator><creator>Rabuffetti, Marco</creator><creator>Puglisi, Guglielmo</creator><creator>Leonetti, Antonella</creator><creator>Bellacicca, Andrea</creator><creator>Conti Nibali, Marco</creator><creator>Gay, Lorenzo</creator><creator>Sciortino, Tommaso</creator><creator>Cerri, Gabriella</creator><creator>Bello, Lorenzo</creator><creator>Fornia, Luca</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7690-1679</orcidid><orcidid>https://orcid.org/0000-0003-3178-1957</orcidid><orcidid>https://orcid.org/0000-0001-7191-2822</orcidid></search><sort><creationdate>20220524</creationdate><title>Stimulation of frontal pathways disrupts hand muscle control during object manipulation</title><author>Viganò, Luca ; Howells, Henrietta ; Rossi, Marco ; Rabuffetti, Marco ; Puglisi, Guglielmo ; Leonetti, Antonella ; Bellacicca, Andrea ; Conti Nibali, Marco ; Gay, Lorenzo ; Sciortino, Tommaso ; Cerri, Gabriella ; Bello, Lorenzo ; Fornia, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-1c693ed005bbb638e3a26ef90c7b7a23c92df8ef944b986fd920f833ee192c5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Viganò, Luca</creatorcontrib><creatorcontrib>Howells, Henrietta</creatorcontrib><creatorcontrib>Rossi, Marco</creatorcontrib><creatorcontrib>Rabuffetti, Marco</creatorcontrib><creatorcontrib>Puglisi, Guglielmo</creatorcontrib><creatorcontrib>Leonetti, Antonella</creatorcontrib><creatorcontrib>Bellacicca, Andrea</creatorcontrib><creatorcontrib>Conti Nibali, Marco</creatorcontrib><creatorcontrib>Gay, Lorenzo</creatorcontrib><creatorcontrib>Sciortino, Tommaso</creatorcontrib><creatorcontrib>Cerri, Gabriella</creatorcontrib><creatorcontrib>Bello, Lorenzo</creatorcontrib><creatorcontrib>Fornia, Luca</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain (London, England : 1878)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viganò, Luca</au><au>Howells, Henrietta</au><au>Rossi, Marco</au><au>Rabuffetti, Marco</au><au>Puglisi, Guglielmo</au><au>Leonetti, Antonella</au><au>Bellacicca, Andrea</au><au>Conti Nibali, Marco</au><au>Gay, Lorenzo</au><au>Sciortino, Tommaso</au><au>Cerri, Gabriella</au><au>Bello, Lorenzo</au><au>Fornia, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stimulation of frontal pathways disrupts hand muscle control during object manipulation</atitle><jtitle>Brain (London, England : 1878)</jtitle><addtitle>Brain</addtitle><date>2022-05-24</date><risdate>2022</risdate><volume>145</volume><issue>4</issue><spage>1535</spage><epage>1550</epage><pages>1535-1550</pages><issn>0006-8950</issn><eissn>1460-2156</eissn><abstract>The activity of frontal motor areas during hand-object interaction is coordinated by dense communication along specific white matter pathways. This architecture allows the continuous shaping of voluntary motor output but, despite extensive investigation in non-human primate studies, remains poorly understood in humans. Disclosure of this system is crucial for predicting and treatment of motor deficits after brain lesions. For this purpose, we investigated the effect of direct electrical stimulation on white matter pathways within the frontal lobe on hand-object manipulation. This was tested in 34 patients (15 left hemisphere, mean age 42 years, 17 male, 15 with tractography) undergoing awake neurosurgery for frontal lobe tumour removal with the aid of the brain mapping technique. The stimulation outcome was quantified based on hand-muscle activity required by task execution. The white matter pathways responsive to stimulation with an interference on muscles were identified by means of probabilistic density estimation of stimulated sites, tract-based lesion-symptom (disconnectome) analysis and diffusion tractography on the single patient level. Finally, we assessed the effect of permanent tract disconnection on motor outcome in the immediate postoperative period using a multivariate lesion-symptom mapping approach. The analysis showed that stimulation disrupted hand-muscle activity during task execution at 66 sites within the white matter below dorsal and ventral premotor regions. Two different EMG interference patterns associated with different structural architectures emerged: (i) an 'arrest' pattern, characterized by complete impairment of muscle activity associated with an abrupt task interruption, occurred when stimulating a white matter area below the dorsal premotor region. Local middle U-shaped fibres, superior fronto-striatal, corticospinal and dorsal fronto-parietal fibres intersected with this region. (ii) a 'clumsy' pattern, characterized by partial disruption of muscle activity associated with movement slowdown and/or uncoordinated finger movements, occurred when stimulating a white matter area below the ventral premotor region. Ventral fronto-parietal and inferior fronto-striatal tracts intersected with this region. Finally, only resections partially including the dorsal white matter region surrounding the supplementary motor area were associated with transient upper-limb deficit (P = 0.05; 5000 permutations). Overall, the results identify two distinct frontal white matter regions possibly mediating different aspects of hand-object interaction via distinct sets of structural connectivity. We suggest the dorsal region, associated with arrest pattern and postoperative immediate motor deficits, to be functionally proximal to motor output implementation, while the ventral region may be involved in sensorimotor integration required for task execution.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34623420</pmid><doi>10.1093/brain/awab379</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7690-1679</orcidid><orcidid>https://orcid.org/0000-0003-3178-1957</orcidid><orcidid>https://orcid.org/0000-0001-7191-2822</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8950 |
ispartof | Brain (London, England : 1878), 2022-05, Vol.145 (4), p.1535-1550 |
issn | 0006-8950 1460-2156 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9128819 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Original |
title | Stimulation of frontal pathways disrupts hand muscle control during object manipulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stimulation%20of%20frontal%20pathways%20disrupts%20hand%20muscle%20control%20during%20object%20manipulation&rft.jtitle=Brain%20(London,%20England%20:%201878)&rft.au=Vigan%C3%B2,%20Luca&rft.date=2022-05-24&rft.volume=145&rft.issue=4&rft.spage=1535&rft.epage=1550&rft.pages=1535-1550&rft.issn=0006-8950&rft.eissn=1460-2156&rft_id=info:doi/10.1093/brain/awab379&rft_dat=%3Cproquest_pubme%3E2580693019%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580693019&rft_id=info:pmid/34623420&rfr_iscdi=true |