A High-Precision Classification Method of Mammary Cancer Based on Improved DenseNet Driven by an Attention Mechanism

Cancer is one of the major causes of human disease and death worldwide, and mammary cancer is one of the most common cancer types among women today. In this paper, we used the deep learning method to conduct a preliminary experiment on Breast Cancer Histopathological Database (BreakHis); BreakHis is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2022-05, Vol.2022, p.8585036-14
Hauptverfasser: Xu, Xuebin, An, Meijuan, Zhang, Jiada, Liu, Wei, Lu, Longbin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 8585036
container_title Computational and mathematical methods in medicine
container_volume 2022
creator Xu, Xuebin
An, Meijuan
Zhang, Jiada
Liu, Wei
Lu, Longbin
description Cancer is one of the major causes of human disease and death worldwide, and mammary cancer is one of the most common cancer types among women today. In this paper, we used the deep learning method to conduct a preliminary experiment on Breast Cancer Histopathological Database (BreakHis); BreakHis is an open dataset. We propose a high-precision classification method of mammary based on an improved convolutional neural network on the BreakHis dataset. We proposed three different MFSCNET models according to the different insertion positions and the number of SE modules, respectively, MFSCNet A, MFSCNet B, and MFSCNet C. We carried out experiments on the BreakHis dataset. Through experimental comparison, especially, the MFSCNet A network model has obtained the best performance in the high-precision classification experiments of mammary cancer. The accuracy of dichotomy was 99.05% to 99.89%. The accuracy of multiclass classification ranges from 94.36% to approximately 98.41%.Therefore, it is proved that MFSCNet can accurately classify the mammary histological images and has a great application prospect in predicting the degree of tumor. Code will be made available on http://github.com/xiaoan-maker/MFSCNet.
doi_str_mv 10.1155/2022/8585036
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9124075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2668912366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-e2973f7197b130afc8725734767551f14178ad0b3c73514fff979b295828d1bd3</originalsourceid><addsrcrecordid>eNp9kUtPGzEURq2qqFDormvkZSU6xI_xYzaVQoCCRIAFlbqzPB6bcTVjB3sSxL9noqQRbFj5-vro3Gt9AHzH6BRjxiYEETKRTDJE-SdwgEUpCy6w_Lyr0d998DXnfwgxLBj-AvYp40jwsjoAwxRe-ce2uE_W-OxjgLNO5-ydN3pYX-d2aGMDo4Nz3fc6vcCZDsYmeKazHfsBXveLFFdjfW5Dtrd2gOfJr2yA9QvUAU6HwYatyrQ6-NwfgT2nu2y_bc9D8Ofy4mF2Vdzc_b6eTW8KUxI0FJZUgjqBK1FjirQzUhAmaCm4YAw7XGIhdYNqagRluHTOVaKqScUkkQ2uG3oIfm28i2Xd28aMeyTdqUXy64-oqL16_xJ8qx7jSlWYlEiwUfBjK0jxaWnzoHqfje06HWxcZkU4lyNLOR_RnxvUpJhzsm43BiO1Dkqtg1LboEb8-O1qO_h_MiNwsgFaHxr97D_WvQLvcZs8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2668912366</pqid></control><display><type>article</type><title>A High-Precision Classification Method of Mammary Cancer Based on Improved DenseNet Driven by an Attention Mechanism</title><source>Wiley-Blackwell Open Access Titles</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Xu, Xuebin ; An, Meijuan ; Zhang, Jiada ; Liu, Wei ; Lu, Longbin</creator><contributor>Tsui, Po-Hsiang</contributor><creatorcontrib>Xu, Xuebin ; An, Meijuan ; Zhang, Jiada ; Liu, Wei ; Lu, Longbin ; Tsui, Po-Hsiang</creatorcontrib><description>Cancer is one of the major causes of human disease and death worldwide, and mammary cancer is one of the most common cancer types among women today. In this paper, we used the deep learning method to conduct a preliminary experiment on Breast Cancer Histopathological Database (BreakHis); BreakHis is an open dataset. We propose a high-precision classification method of mammary based on an improved convolutional neural network on the BreakHis dataset. We proposed three different MFSCNET models according to the different insertion positions and the number of SE modules, respectively, MFSCNet A, MFSCNet B, and MFSCNet C. We carried out experiments on the BreakHis dataset. Through experimental comparison, especially, the MFSCNet A network model has obtained the best performance in the high-precision classification experiments of mammary cancer. The accuracy of dichotomy was 99.05% to 99.89%. The accuracy of multiclass classification ranges from 94.36% to approximately 98.41%.Therefore, it is proved that MFSCNet can accurately classify the mammary histological images and has a great application prospect in predicting the degree of tumor. Code will be made available on http://github.com/xiaoan-maker/MFSCNet.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2022/8585036</identifier><identifier>PMID: 35607649</identifier><language>eng</language><publisher>United States: Hindawi</publisher><ispartof>Computational and mathematical methods in medicine, 2022-05, Vol.2022, p.8585036-14</ispartof><rights>Copyright © 2022 Xuebin Xu et al.</rights><rights>Copyright © 2022 Xuebin Xu et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-e2973f7197b130afc8725734767551f14178ad0b3c73514fff979b295828d1bd3</citedby><cites>FETCH-LOGICAL-c420t-e2973f7197b130afc8725734767551f14178ad0b3c73514fff979b295828d1bd3</cites><orcidid>0000-0003-4816-6424 ; 0000-0002-3131-7401 ; 0000-0001-5179-1111 ; 0000-0002-8858-8501 ; 0000-0002-5903-8818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124075/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124075/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35607649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tsui, Po-Hsiang</contributor><creatorcontrib>Xu, Xuebin</creatorcontrib><creatorcontrib>An, Meijuan</creatorcontrib><creatorcontrib>Zhang, Jiada</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lu, Longbin</creatorcontrib><title>A High-Precision Classification Method of Mammary Cancer Based on Improved DenseNet Driven by an Attention Mechanism</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Cancer is one of the major causes of human disease and death worldwide, and mammary cancer is one of the most common cancer types among women today. In this paper, we used the deep learning method to conduct a preliminary experiment on Breast Cancer Histopathological Database (BreakHis); BreakHis is an open dataset. We propose a high-precision classification method of mammary based on an improved convolutional neural network on the BreakHis dataset. We proposed three different MFSCNET models according to the different insertion positions and the number of SE modules, respectively, MFSCNet A, MFSCNet B, and MFSCNet C. We carried out experiments on the BreakHis dataset. Through experimental comparison, especially, the MFSCNet A network model has obtained the best performance in the high-precision classification experiments of mammary cancer. The accuracy of dichotomy was 99.05% to 99.89%. The accuracy of multiclass classification ranges from 94.36% to approximately 98.41%.Therefore, it is proved that MFSCNet can accurately classify the mammary histological images and has a great application prospect in predicting the degree of tumor. Code will be made available on http://github.com/xiaoan-maker/MFSCNet.</description><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kUtPGzEURq2qqFDormvkZSU6xI_xYzaVQoCCRIAFlbqzPB6bcTVjB3sSxL9noqQRbFj5-vro3Gt9AHzH6BRjxiYEETKRTDJE-SdwgEUpCy6w_Lyr0d998DXnfwgxLBj-AvYp40jwsjoAwxRe-ce2uE_W-OxjgLNO5-ydN3pYX-d2aGMDo4Nz3fc6vcCZDsYmeKazHfsBXveLFFdjfW5Dtrd2gOfJr2yA9QvUAU6HwYatyrQ6-NwfgT2nu2y_bc9D8Ofy4mF2Vdzc_b6eTW8KUxI0FJZUgjqBK1FjirQzUhAmaCm4YAw7XGIhdYNqagRluHTOVaKqScUkkQ2uG3oIfm28i2Xd28aMeyTdqUXy64-oqL16_xJ8qx7jSlWYlEiwUfBjK0jxaWnzoHqfje06HWxcZkU4lyNLOR_RnxvUpJhzsm43BiO1Dkqtg1LboEb8-O1qO_h_MiNwsgFaHxr97D_WvQLvcZs8</recordid><startdate>20220514</startdate><enddate>20220514</enddate><creator>Xu, Xuebin</creator><creator>An, Meijuan</creator><creator>Zhang, Jiada</creator><creator>Liu, Wei</creator><creator>Lu, Longbin</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4816-6424</orcidid><orcidid>https://orcid.org/0000-0002-3131-7401</orcidid><orcidid>https://orcid.org/0000-0001-5179-1111</orcidid><orcidid>https://orcid.org/0000-0002-8858-8501</orcidid><orcidid>https://orcid.org/0000-0002-5903-8818</orcidid></search><sort><creationdate>20220514</creationdate><title>A High-Precision Classification Method of Mammary Cancer Based on Improved DenseNet Driven by an Attention Mechanism</title><author>Xu, Xuebin ; An, Meijuan ; Zhang, Jiada ; Liu, Wei ; Lu, Longbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-e2973f7197b130afc8725734767551f14178ad0b3c73514fff979b295828d1bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xuebin</creatorcontrib><creatorcontrib>An, Meijuan</creatorcontrib><creatorcontrib>Zhang, Jiada</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lu, Longbin</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xuebin</au><au>An, Meijuan</au><au>Zhang, Jiada</au><au>Liu, Wei</au><au>Lu, Longbin</au><au>Tsui, Po-Hsiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Precision Classification Method of Mammary Cancer Based on Improved DenseNet Driven by an Attention Mechanism</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2022-05-14</date><risdate>2022</risdate><volume>2022</volume><spage>8585036</spage><epage>14</epage><pages>8585036-14</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Cancer is one of the major causes of human disease and death worldwide, and mammary cancer is one of the most common cancer types among women today. In this paper, we used the deep learning method to conduct a preliminary experiment on Breast Cancer Histopathological Database (BreakHis); BreakHis is an open dataset. We propose a high-precision classification method of mammary based on an improved convolutional neural network on the BreakHis dataset. We proposed three different MFSCNET models according to the different insertion positions and the number of SE modules, respectively, MFSCNet A, MFSCNet B, and MFSCNet C. We carried out experiments on the BreakHis dataset. Through experimental comparison, especially, the MFSCNet A network model has obtained the best performance in the high-precision classification experiments of mammary cancer. The accuracy of dichotomy was 99.05% to 99.89%. The accuracy of multiclass classification ranges from 94.36% to approximately 98.41%.Therefore, it is proved that MFSCNet can accurately classify the mammary histological images and has a great application prospect in predicting the degree of tumor. Code will be made available on http://github.com/xiaoan-maker/MFSCNet.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>35607649</pmid><doi>10.1155/2022/8585036</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4816-6424</orcidid><orcidid>https://orcid.org/0000-0002-3131-7401</orcidid><orcidid>https://orcid.org/0000-0001-5179-1111</orcidid><orcidid>https://orcid.org/0000-0002-8858-8501</orcidid><orcidid>https://orcid.org/0000-0002-5903-8818</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2022-05, Vol.2022, p.8585036-14
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9124075
source Wiley-Blackwell Open Access Titles; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
title A High-Precision Classification Method of Mammary Cancer Based on Improved DenseNet Driven by an Attention Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Precision%20Classification%20Method%20of%20Mammary%20Cancer%20Based%20on%20Improved%20DenseNet%20Driven%20by%20an%20Attention%20Mechanism&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Xu,%20Xuebin&rft.date=2022-05-14&rft.volume=2022&rft.spage=8585036&rft.epage=14&rft.pages=8585036-14&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2022/8585036&rft_dat=%3Cproquest_pubme%3E2668912366%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2668912366&rft_id=info:pmid/35607649&rfr_iscdi=true