Inter‐species lateral gene transfer focused on the Chlamydia plasticity zone identifies loci associated with immediate cytotoxicity and inclusion stability

Chlamydia muridarum actively grows in murine mucosae and is a representative model of human chlamydial genital tract disease. In contrast, C. trachomatis infections in mice are limited and rarely cause disease. The factors that contribute to these differences in host adaptation and specificity remai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2021-12, Vol.116 (6), p.1433-1448
Hauptverfasser: Dimond, Zoe E., Suchland, Robert J., Baid, Srishti, LaBrie, Scott D., Soules, Katelyn R., Stanley, Jacob, Carrell, Steven, Kwong, Forrest, Wang, Yibing, Rockey, Daniel D., Hybiske, Kevin, Hefty, P. Scott
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1448
container_issue 6
container_start_page 1433
container_title Molecular microbiology
container_volume 116
creator Dimond, Zoe E.
Suchland, Robert J.
Baid, Srishti
LaBrie, Scott D.
Soules, Katelyn R.
Stanley, Jacob
Carrell, Steven
Kwong, Forrest
Wang, Yibing
Rockey, Daniel D.
Hybiske, Kevin
Hefty, P. Scott
description Chlamydia muridarum actively grows in murine mucosae and is a representative model of human chlamydial genital tract disease. In contrast, C. trachomatis infections in mice are limited and rarely cause disease. The factors that contribute to these differences in host adaptation and specificity remain elusive. Overall genomic similarity leads to challenges in the understanding of these significant differences in tropism. A region of major genetic divergence termed the plasticity zone (PZ) has been hypothesized to contribute to the host specificity. To evaluate this hypothesis, lateral gene transfer was used to generate multiple hetero‐genomic strains that are predominately C. trachomatis but have replaced regions of the PZ with those from C. muridarum. In vitro analysis of these chimeras revealed C. trachomatis‐like growth as well as poor mouse infection capabilities. Growth‐independent cytotoxicity phenotypes have been ascribed to three large putative cytotoxins (LCT) encoded in the C. muridarum PZ. However, analysis of PZ chimeras supported that gene products other than the LCTs are responsible for cytopathic and cytotoxic phenotypes. Growth analysis of associated chimeras also led to the discovery of an inclusion protein, CTL0402 (CT147), and homolog TC0424, which was critical for the integrity of the inclusion and preventing apoptosis. The major region of genomic diversity between the C. trachomatis and C. muridarum is the 25–50 Kb plasticity zone. Replacement of the 50 Kb PZ from C. muridarum into C. trachomatis did not enhance infection capabilities in mice. Generation of these chimera strains enabled the discovery of an inclusion membrane protein, CT147, and importance to maintaining membrane integrity.
doi_str_mv 10.1111/mmi.14832
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9119408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611575026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4432-ffc33123da4ae9a1ec1c95e5d88a34f9ee73859953efae3d650e278d6f9e73a53</originalsourceid><addsrcrecordid>eNp1kc1u1DAQxy0EokvhwAsgS1zgkNYfcTa-IKEVHyu14gISN8t1Jl1Xjr3EDiWceARegJfjSZg2pQIkfBnNzG_-ng9CHnN2xPEdD4M_4nUrxR2y4rJRldCqvUtWTCtWyVZ8PCAPcr5gjEvWyPvkQNZrDDftivzYxgLjz2_f8x6ch0yDRd8Geg4RaBltzD2MtE9uytDRFGnZAd3sgh3mzlu6DzYX73yZ6deEFb6DWHx_rZScpzZnNKjZ0UtfdtQPA3RXPnVzSSV9WWpt7KiPLkzZ4xe52DMfMP6Q3OttyPDoxh6SD69fvd-8rU7evdluXp5Urq6lqPreScmF7GxtQVsOjjutQHVta2XdawAcV2mtJPQWZNcoBmLddg2m1tIqeUheLLr76Qz7czgD7sDsRz_YcTbJevN3JvqdOU-fjeZc16xFgWc3AmP6NEEuZvDZQQg2QpqyEUrXQte4dkSf_oNepGmMOJ4RDedqrZhokHq-UG5MOY_Q3zbDmbk6usGjm-ujI_vkz-5vyd9XRuB4AS59gPn_Sub0dLtI_gLOi70s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611575026</pqid></control><display><type>article</type><title>Inter‐species lateral gene transfer focused on the Chlamydia plasticity zone identifies loci associated with immediate cytotoxicity and inclusion stability</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dimond, Zoe E. ; Suchland, Robert J. ; Baid, Srishti ; LaBrie, Scott D. ; Soules, Katelyn R. ; Stanley, Jacob ; Carrell, Steven ; Kwong, Forrest ; Wang, Yibing ; Rockey, Daniel D. ; Hybiske, Kevin ; Hefty, P. Scott</creator><creatorcontrib>Dimond, Zoe E. ; Suchland, Robert J. ; Baid, Srishti ; LaBrie, Scott D. ; Soules, Katelyn R. ; Stanley, Jacob ; Carrell, Steven ; Kwong, Forrest ; Wang, Yibing ; Rockey, Daniel D. ; Hybiske, Kevin ; Hefty, P. Scott</creatorcontrib><description>Chlamydia muridarum actively grows in murine mucosae and is a representative model of human chlamydial genital tract disease. In contrast, C. trachomatis infections in mice are limited and rarely cause disease. The factors that contribute to these differences in host adaptation and specificity remain elusive. Overall genomic similarity leads to challenges in the understanding of these significant differences in tropism. A region of major genetic divergence termed the plasticity zone (PZ) has been hypothesized to contribute to the host specificity. To evaluate this hypothesis, lateral gene transfer was used to generate multiple hetero‐genomic strains that are predominately C. trachomatis but have replaced regions of the PZ with those from C. muridarum. In vitro analysis of these chimeras revealed C. trachomatis‐like growth as well as poor mouse infection capabilities. Growth‐independent cytotoxicity phenotypes have been ascribed to three large putative cytotoxins (LCT) encoded in the C. muridarum PZ. However, analysis of PZ chimeras supported that gene products other than the LCTs are responsible for cytopathic and cytotoxic phenotypes. Growth analysis of associated chimeras also led to the discovery of an inclusion protein, CTL0402 (CT147), and homolog TC0424, which was critical for the integrity of the inclusion and preventing apoptosis. The major region of genomic diversity between the C. trachomatis and C. muridarum is the 25–50 Kb plasticity zone. Replacement of the 50 Kb PZ from C. muridarum into C. trachomatis did not enhance infection capabilities in mice. Generation of these chimera strains enabled the discovery of an inclusion membrane protein, CT147, and importance to maintaining membrane integrity.</description><identifier>ISSN: 0950-382X</identifier><identifier>ISSN: 1365-2958</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.14832</identifier><identifier>PMID: 34738268</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; Apoptosis ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Chimeras ; Chlamydia ; Chlamydia Infections - microbiology ; Chlamydia muridarum - genetics ; Chlamydia muridarum - metabolism ; Chlamydia trachomatis - genetics ; Chlamydia trachomatis - metabolism ; cytopathic effect ; Cytotoxicity ; Cytotoxins ; Divergence ; Female ; Gene transfer ; Gene Transfer, Horizontal ; Genetic Variation ; Genital tract ; Genomics ; Homology ; Host specificity ; Humans ; Infections ; Mice ; Mice, Inbred C57BL ; Phenotypes ; Plastic properties ; Plasticity ; plasticity zone ; Sexually transmitted diseases ; STD ; Toxicity ; Tropism</subject><ispartof>Molecular microbiology, 2021-12, Vol.116 (6), p.1433-1448</ispartof><rights>2021 John Wiley &amp; Sons Ltd</rights><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2021 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4432-ffc33123da4ae9a1ec1c95e5d88a34f9ee73859953efae3d650e278d6f9e73a53</citedby><cites>FETCH-LOGICAL-c4432-ffc33123da4ae9a1ec1c95e5d88a34f9ee73859953efae3d650e278d6f9e73a53</cites><orcidid>0000-0002-5985-206X ; 0000-0002-2967-3079 ; 0000-0001-7103-1531 ; 0000-0002-2303-2465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.14832$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.14832$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34738268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dimond, Zoe E.</creatorcontrib><creatorcontrib>Suchland, Robert J.</creatorcontrib><creatorcontrib>Baid, Srishti</creatorcontrib><creatorcontrib>LaBrie, Scott D.</creatorcontrib><creatorcontrib>Soules, Katelyn R.</creatorcontrib><creatorcontrib>Stanley, Jacob</creatorcontrib><creatorcontrib>Carrell, Steven</creatorcontrib><creatorcontrib>Kwong, Forrest</creatorcontrib><creatorcontrib>Wang, Yibing</creatorcontrib><creatorcontrib>Rockey, Daniel D.</creatorcontrib><creatorcontrib>Hybiske, Kevin</creatorcontrib><creatorcontrib>Hefty, P. Scott</creatorcontrib><title>Inter‐species lateral gene transfer focused on the Chlamydia plasticity zone identifies loci associated with immediate cytotoxicity and inclusion stability</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Chlamydia muridarum actively grows in murine mucosae and is a representative model of human chlamydial genital tract disease. In contrast, C. trachomatis infections in mice are limited and rarely cause disease. The factors that contribute to these differences in host adaptation and specificity remain elusive. Overall genomic similarity leads to challenges in the understanding of these significant differences in tropism. A region of major genetic divergence termed the plasticity zone (PZ) has been hypothesized to contribute to the host specificity. To evaluate this hypothesis, lateral gene transfer was used to generate multiple hetero‐genomic strains that are predominately C. trachomatis but have replaced regions of the PZ with those from C. muridarum. In vitro analysis of these chimeras revealed C. trachomatis‐like growth as well as poor mouse infection capabilities. Growth‐independent cytotoxicity phenotypes have been ascribed to three large putative cytotoxins (LCT) encoded in the C. muridarum PZ. However, analysis of PZ chimeras supported that gene products other than the LCTs are responsible for cytopathic and cytotoxic phenotypes. Growth analysis of associated chimeras also led to the discovery of an inclusion protein, CTL0402 (CT147), and homolog TC0424, which was critical for the integrity of the inclusion and preventing apoptosis. The major region of genomic diversity between the C. trachomatis and C. muridarum is the 25–50 Kb plasticity zone. Replacement of the 50 Kb PZ from C. muridarum into C. trachomatis did not enhance infection capabilities in mice. Generation of these chimera strains enabled the discovery of an inclusion membrane protein, CT147, and importance to maintaining membrane integrity.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Chimeras</subject><subject>Chlamydia</subject><subject>Chlamydia Infections - microbiology</subject><subject>Chlamydia muridarum - genetics</subject><subject>Chlamydia muridarum - metabolism</subject><subject>Chlamydia trachomatis - genetics</subject><subject>Chlamydia trachomatis - metabolism</subject><subject>cytopathic effect</subject><subject>Cytotoxicity</subject><subject>Cytotoxins</subject><subject>Divergence</subject><subject>Female</subject><subject>Gene transfer</subject><subject>Gene Transfer, Horizontal</subject><subject>Genetic Variation</subject><subject>Genital tract</subject><subject>Genomics</subject><subject>Homology</subject><subject>Host specificity</subject><subject>Humans</subject><subject>Infections</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Phenotypes</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>plasticity zone</subject><subject>Sexually transmitted diseases</subject><subject>STD</subject><subject>Toxicity</subject><subject>Tropism</subject><issn>0950-382X</issn><issn>1365-2958</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAQxy0EokvhwAsgS1zgkNYfcTa-IKEVHyu14gISN8t1Jl1Xjr3EDiWceARegJfjSZg2pQIkfBnNzG_-ng9CHnN2xPEdD4M_4nUrxR2y4rJRldCqvUtWTCtWyVZ8PCAPcr5gjEvWyPvkQNZrDDftivzYxgLjz2_f8x6ch0yDRd8Geg4RaBltzD2MtE9uytDRFGnZAd3sgh3mzlu6DzYX73yZ6deEFb6DWHx_rZScpzZnNKjZ0UtfdtQPA3RXPnVzSSV9WWpt7KiPLkzZ4xe52DMfMP6Q3OttyPDoxh6SD69fvd-8rU7evdluXp5Urq6lqPreScmF7GxtQVsOjjutQHVta2XdawAcV2mtJPQWZNcoBmLddg2m1tIqeUheLLr76Qz7czgD7sDsRz_YcTbJevN3JvqdOU-fjeZc16xFgWc3AmP6NEEuZvDZQQg2QpqyEUrXQte4dkSf_oNepGmMOJ4RDedqrZhokHq-UG5MOY_Q3zbDmbk6usGjm-ujI_vkz-5vyd9XRuB4AS59gPn_Sub0dLtI_gLOi70s</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Dimond, Zoe E.</creator><creator>Suchland, Robert J.</creator><creator>Baid, Srishti</creator><creator>LaBrie, Scott D.</creator><creator>Soules, Katelyn R.</creator><creator>Stanley, Jacob</creator><creator>Carrell, Steven</creator><creator>Kwong, Forrest</creator><creator>Wang, Yibing</creator><creator>Rockey, Daniel D.</creator><creator>Hybiske, Kevin</creator><creator>Hefty, P. Scott</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5985-206X</orcidid><orcidid>https://orcid.org/0000-0002-2967-3079</orcidid><orcidid>https://orcid.org/0000-0001-7103-1531</orcidid><orcidid>https://orcid.org/0000-0002-2303-2465</orcidid></search><sort><creationdate>202112</creationdate><title>Inter‐species lateral gene transfer focused on the Chlamydia plasticity zone identifies loci associated with immediate cytotoxicity and inclusion stability</title><author>Dimond, Zoe E. ; Suchland, Robert J. ; Baid, Srishti ; LaBrie, Scott D. ; Soules, Katelyn R. ; Stanley, Jacob ; Carrell, Steven ; Kwong, Forrest ; Wang, Yibing ; Rockey, Daniel D. ; Hybiske, Kevin ; Hefty, P. Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4432-ffc33123da4ae9a1ec1c95e5d88a34f9ee73859953efae3d650e278d6f9e73a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Chimeras</topic><topic>Chlamydia</topic><topic>Chlamydia Infections - microbiology</topic><topic>Chlamydia muridarum - genetics</topic><topic>Chlamydia muridarum - metabolism</topic><topic>Chlamydia trachomatis - genetics</topic><topic>Chlamydia trachomatis - metabolism</topic><topic>cytopathic effect</topic><topic>Cytotoxicity</topic><topic>Cytotoxins</topic><topic>Divergence</topic><topic>Female</topic><topic>Gene transfer</topic><topic>Gene Transfer, Horizontal</topic><topic>Genetic Variation</topic><topic>Genital tract</topic><topic>Genomics</topic><topic>Homology</topic><topic>Host specificity</topic><topic>Humans</topic><topic>Infections</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Phenotypes</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>plasticity zone</topic><topic>Sexually transmitted diseases</topic><topic>STD</topic><topic>Toxicity</topic><topic>Tropism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimond, Zoe E.</creatorcontrib><creatorcontrib>Suchland, Robert J.</creatorcontrib><creatorcontrib>Baid, Srishti</creatorcontrib><creatorcontrib>LaBrie, Scott D.</creatorcontrib><creatorcontrib>Soules, Katelyn R.</creatorcontrib><creatorcontrib>Stanley, Jacob</creatorcontrib><creatorcontrib>Carrell, Steven</creatorcontrib><creatorcontrib>Kwong, Forrest</creatorcontrib><creatorcontrib>Wang, Yibing</creatorcontrib><creatorcontrib>Rockey, Daniel D.</creatorcontrib><creatorcontrib>Hybiske, Kevin</creatorcontrib><creatorcontrib>Hefty, P. Scott</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimond, Zoe E.</au><au>Suchland, Robert J.</au><au>Baid, Srishti</au><au>LaBrie, Scott D.</au><au>Soules, Katelyn R.</au><au>Stanley, Jacob</au><au>Carrell, Steven</au><au>Kwong, Forrest</au><au>Wang, Yibing</au><au>Rockey, Daniel D.</au><au>Hybiske, Kevin</au><au>Hefty, P. Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inter‐species lateral gene transfer focused on the Chlamydia plasticity zone identifies loci associated with immediate cytotoxicity and inclusion stability</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2021-12</date><risdate>2021</risdate><volume>116</volume><issue>6</issue><spage>1433</spage><epage>1448</epage><pages>1433-1448</pages><issn>0950-382X</issn><issn>1365-2958</issn><eissn>1365-2958</eissn><abstract>Chlamydia muridarum actively grows in murine mucosae and is a representative model of human chlamydial genital tract disease. In contrast, C. trachomatis infections in mice are limited and rarely cause disease. The factors that contribute to these differences in host adaptation and specificity remain elusive. Overall genomic similarity leads to challenges in the understanding of these significant differences in tropism. A region of major genetic divergence termed the plasticity zone (PZ) has been hypothesized to contribute to the host specificity. To evaluate this hypothesis, lateral gene transfer was used to generate multiple hetero‐genomic strains that are predominately C. trachomatis but have replaced regions of the PZ with those from C. muridarum. In vitro analysis of these chimeras revealed C. trachomatis‐like growth as well as poor mouse infection capabilities. Growth‐independent cytotoxicity phenotypes have been ascribed to three large putative cytotoxins (LCT) encoded in the C. muridarum PZ. However, analysis of PZ chimeras supported that gene products other than the LCTs are responsible for cytopathic and cytotoxic phenotypes. Growth analysis of associated chimeras also led to the discovery of an inclusion protein, CTL0402 (CT147), and homolog TC0424, which was critical for the integrity of the inclusion and preventing apoptosis. The major region of genomic diversity between the C. trachomatis and C. muridarum is the 25–50 Kb plasticity zone. Replacement of the 50 Kb PZ from C. muridarum into C. trachomatis did not enhance infection capabilities in mice. Generation of these chimera strains enabled the discovery of an inclusion membrane protein, CT147, and importance to maintaining membrane integrity.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>34738268</pmid><doi>10.1111/mmi.14832</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5985-206X</orcidid><orcidid>https://orcid.org/0000-0002-2967-3079</orcidid><orcidid>https://orcid.org/0000-0001-7103-1531</orcidid><orcidid>https://orcid.org/0000-0002-2303-2465</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2021-12, Vol.116 (6), p.1433-1448
issn 0950-382X
1365-2958
1365-2958
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9119408
source Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals
subjects Animals
Apoptosis
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Chimeras
Chlamydia
Chlamydia Infections - microbiology
Chlamydia muridarum - genetics
Chlamydia muridarum - metabolism
Chlamydia trachomatis - genetics
Chlamydia trachomatis - metabolism
cytopathic effect
Cytotoxicity
Cytotoxins
Divergence
Female
Gene transfer
Gene Transfer, Horizontal
Genetic Variation
Genital tract
Genomics
Homology
Host specificity
Humans
Infections
Mice
Mice, Inbred C57BL
Phenotypes
Plastic properties
Plasticity
plasticity zone
Sexually transmitted diseases
STD
Toxicity
Tropism
title Inter‐species lateral gene transfer focused on the Chlamydia plasticity zone identifies loci associated with immediate cytotoxicity and inclusion stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inter%E2%80%90species%20lateral%20gene%20transfer%20focused%20on%20the%20Chlamydia%20plasticity%20zone%20identifies%20loci%20associated%20with%20immediate%20cytotoxicity%20and%20inclusion%20stability&rft.jtitle=Molecular%20microbiology&rft.au=Dimond,%20Zoe%20E.&rft.date=2021-12&rft.volume=116&rft.issue=6&rft.spage=1433&rft.epage=1448&rft.pages=1433-1448&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.14832&rft_dat=%3Cproquest_pubme%3E2611575026%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2611575026&rft_id=info:pmid/34738268&rfr_iscdi=true