Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst
Reduction of nitroaromatics to the corresponding amines is a key process in the fine and bulk chemicals industry to produce polymers, pharmaceuticals, agrochemicals and dyes. However, their effective and selective reduction requires high temperatures and pressurized hydrogen and involves noble metal...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2022-05, Vol.17 (5), p.485-492 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 492 |
---|---|
container_issue | 5 |
container_start_page | 485 |
container_title | Nature nanotechnology |
container_volume | 17 |
creator | Cheruvathoor Poulose, Aby Zoppellaro, Giorgio Konidakis, Ioannis Serpetzoglou, Efthymis Stratakis, Emmanuel Tomanec, Ondřej Beller, Matthias Bakandritsos, Aristides Zbořil, Radek |
description | Reduction of nitroaromatics to the corresponding amines is a key process in the fine and bulk chemicals industry to produce polymers, pharmaceuticals, agrochemicals and dyes. However, their effective and selective reduction requires high temperatures and pressurized hydrogen and involves noble metal-based catalysts. Here we report on an earth-abundant, plasmonic nano-photocatalyst, with an excellent reaction rate towards the selective hydrogenation of nitroaromatics. With solar light as the only energy input, the chalcopyrite catalyst operates through the combined action of hot holes and photothermal effects. Ultrafast laser transient absorption and light-induced electron paramagnetic resonance spectroscopies have unveiled the energy matching of the hot holes in the valence band of the catalyst with the frontier orbitals of the hydrogen and electron donor, via a transient coordination intermediate. Consequently, the reusable and sustainable copper-iron-sulfide (CuFeS
2
) catalyst delivers previously unattainable turnover frequencies, even in large-scale reactions, while the cost-normalized production rate stands an order of magnitude above the state of the art.
A low-cost plasmonic photocatalyst based on earth-abundant metals (Fe, Cu) maximizes solar energy conversion due to the concerted interplay of energies and interactions between reactants and hot carriers, thus producing aromatic amines with a high yield. |
doi_str_mv | 10.1038/s41565-022-01087-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9117130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644938105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-2f974b57a20a87c9142990a5ae4e22fc767bef0401f2fd9887961fada372f4c93</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEoqXwBzggS1y4hPorcXxBQhUtSJV6gbM1ccYbV1l7sZ2t-u8x3bJ8HDjNSPO878zobZrXjL5nVAznWbKu71rKeUsZHVQrnjSnTMmhFUJ3T4_9oE6aFznfUtpxzeXz5kR0QiquxGkTLiEXAmEiGRe0xe-RJJzW2sVAoiPBlxQhYcBM1jBhInuf_bggWfxmLuTOl7nqCUIqcwtjZSAUslsgb2PwluzmWKKFAst9Li-bZw6WjK8e61nz7fLT14vP7fXN1ZeLj9etlUqWljut5Ngp4BQGZTWTXGsKHaBEzp1VvRrRUUmZ427Sw6B0zxxMIBR30mpx1nw4-O7WcYuTxVASLGaX_BbSvYngzd-T4GeziXujGVNM0Grw7tEgxe8r5mK2PltcFggY12x4L6UWA6NdRd_-g97GNYX6XqX6nnEtqKoUP1A2xZwTuuMxjJqfcZpDnKbGaR7iNKKK3vz5xlHyK78KiAOQ6yhsMP3e_R_bH8KrrZ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666129307</pqid></control><display><type>article</type><title>Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst</title><source>SpringerLink Journals</source><source>Nature</source><creator>Cheruvathoor Poulose, Aby ; Zoppellaro, Giorgio ; Konidakis, Ioannis ; Serpetzoglou, Efthymis ; Stratakis, Emmanuel ; Tomanec, Ondřej ; Beller, Matthias ; Bakandritsos, Aristides ; Zbořil, Radek</creator><creatorcontrib>Cheruvathoor Poulose, Aby ; Zoppellaro, Giorgio ; Konidakis, Ioannis ; Serpetzoglou, Efthymis ; Stratakis, Emmanuel ; Tomanec, Ondřej ; Beller, Matthias ; Bakandritsos, Aristides ; Zbořil, Radek</creatorcontrib><description>Reduction of nitroaromatics to the corresponding amines is a key process in the fine and bulk chemicals industry to produce polymers, pharmaceuticals, agrochemicals and dyes. However, their effective and selective reduction requires high temperatures and pressurized hydrogen and involves noble metal-based catalysts. Here we report on an earth-abundant, plasmonic nano-photocatalyst, with an excellent reaction rate towards the selective hydrogenation of nitroaromatics. With solar light as the only energy input, the chalcopyrite catalyst operates through the combined action of hot holes and photothermal effects. Ultrafast laser transient absorption and light-induced electron paramagnetic resonance spectroscopies have unveiled the energy matching of the hot holes in the valence band of the catalyst with the frontier orbitals of the hydrogen and electron donor, via a transient coordination intermediate. Consequently, the reusable and sustainable copper-iron-sulfide (CuFeS
2
) catalyst delivers previously unattainable turnover frequencies, even in large-scale reactions, while the cost-normalized production rate stands an order of magnitude above the state of the art.
A low-cost plasmonic photocatalyst based on earth-abundant metals (Fe, Cu) maximizes solar energy conversion due to the concerted interplay of energies and interactions between reactants and hot carriers, thus producing aromatic amines with a high yield.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-022-01087-3</identifier><identifier>PMID: 35347273</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 140/133 ; 140/146 ; 639/301/299/890 ; 639/638/77/887 ; 639/925/357/354 ; Agrochemicals ; Amines ; Catalysts ; Chalcopyrite ; Chemical industry ; Chemistry and Materials Science ; Copper ; Crystal structure ; Earth ; Electron paramagnetic resonance ; Electron spin resonance ; Energy ; Energy conversion ; Fourier transforms ; Heavy metals ; High temperature ; Hydrogen ; Hydrogenation ; Iron ; Lasers ; Ligands ; Light ; Light effects ; Materials Science ; Nanotechnology ; Nanotechnology and Microengineering ; Noble metals ; Photocatalysis ; Photocatalysts ; Photothermal conversion ; Plasmonics ; Polymers ; Solar energy ; Solar energy conversion ; Spectrum analysis ; Ultrafast lasers ; Valence band</subject><ispartof>Nature nanotechnology, 2022-05, Vol.17 (5), p.485-492</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-2f974b57a20a87c9142990a5ae4e22fc767bef0401f2fd9887961fada372f4c93</citedby><cites>FETCH-LOGICAL-c474t-2f974b57a20a87c9142990a5ae4e22fc767bef0401f2fd9887961fada372f4c93</cites><orcidid>0000-0002-4547-3931 ; 0000-0003-4411-9348 ; 0000-0002-2600-2245 ; 0000-0003-2304-2564 ; 0000-0001-5709-0965 ; 0000-0001-6668-6381 ; 0000-0002-1908-8618 ; 0000-0002-3147-2196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-022-01087-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-022-01087-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35347273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheruvathoor Poulose, Aby</creatorcontrib><creatorcontrib>Zoppellaro, Giorgio</creatorcontrib><creatorcontrib>Konidakis, Ioannis</creatorcontrib><creatorcontrib>Serpetzoglou, Efthymis</creatorcontrib><creatorcontrib>Stratakis, Emmanuel</creatorcontrib><creatorcontrib>Tomanec, Ondřej</creatorcontrib><creatorcontrib>Beller, Matthias</creatorcontrib><creatorcontrib>Bakandritsos, Aristides</creatorcontrib><creatorcontrib>Zbořil, Radek</creatorcontrib><title>Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Reduction of nitroaromatics to the corresponding amines is a key process in the fine and bulk chemicals industry to produce polymers, pharmaceuticals, agrochemicals and dyes. However, their effective and selective reduction requires high temperatures and pressurized hydrogen and involves noble metal-based catalysts. Here we report on an earth-abundant, plasmonic nano-photocatalyst, with an excellent reaction rate towards the selective hydrogenation of nitroaromatics. With solar light as the only energy input, the chalcopyrite catalyst operates through the combined action of hot holes and photothermal effects. Ultrafast laser transient absorption and light-induced electron paramagnetic resonance spectroscopies have unveiled the energy matching of the hot holes in the valence band of the catalyst with the frontier orbitals of the hydrogen and electron donor, via a transient coordination intermediate. Consequently, the reusable and sustainable copper-iron-sulfide (CuFeS
2
) catalyst delivers previously unattainable turnover frequencies, even in large-scale reactions, while the cost-normalized production rate stands an order of magnitude above the state of the art.
A low-cost plasmonic photocatalyst based on earth-abundant metals (Fe, Cu) maximizes solar energy conversion due to the concerted interplay of energies and interactions between reactants and hot carriers, thus producing aromatic amines with a high yield.</description><subject>140/125</subject><subject>140/133</subject><subject>140/146</subject><subject>639/301/299/890</subject><subject>639/638/77/887</subject><subject>639/925/357/354</subject><subject>Agrochemicals</subject><subject>Amines</subject><subject>Catalysts</subject><subject>Chalcopyrite</subject><subject>Chemical industry</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Earth</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin resonance</subject><subject>Energy</subject><subject>Energy conversion</subject><subject>Fourier transforms</subject><subject>Heavy metals</subject><subject>High temperature</subject><subject>Hydrogen</subject><subject>Hydrogenation</subject><subject>Iron</subject><subject>Lasers</subject><subject>Ligands</subject><subject>Light</subject><subject>Light effects</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Noble metals</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photothermal conversion</subject><subject>Plasmonics</subject><subject>Polymers</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><subject>Spectrum analysis</subject><subject>Ultrafast lasers</subject><subject>Valence band</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1v1DAQhiMEoqXwBzggS1y4hPorcXxBQhUtSJV6gbM1ccYbV1l7sZ2t-u8x3bJ8HDjNSPO878zobZrXjL5nVAznWbKu71rKeUsZHVQrnjSnTMmhFUJ3T4_9oE6aFznfUtpxzeXz5kR0QiquxGkTLiEXAmEiGRe0xe-RJJzW2sVAoiPBlxQhYcBM1jBhInuf_bggWfxmLuTOl7nqCUIqcwtjZSAUslsgb2PwluzmWKKFAst9Li-bZw6WjK8e61nz7fLT14vP7fXN1ZeLj9etlUqWljut5Ngp4BQGZTWTXGsKHaBEzp1VvRrRUUmZ427Sw6B0zxxMIBR30mpx1nw4-O7WcYuTxVASLGaX_BbSvYngzd-T4GeziXujGVNM0Grw7tEgxe8r5mK2PltcFggY12x4L6UWA6NdRd_-g97GNYX6XqX6nnEtqKoUP1A2xZwTuuMxjJqfcZpDnKbGaR7iNKKK3vz5xlHyK78KiAOQ6yhsMP3e_R_bH8KrrZ0</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Cheruvathoor Poulose, Aby</creator><creator>Zoppellaro, Giorgio</creator><creator>Konidakis, Ioannis</creator><creator>Serpetzoglou, Efthymis</creator><creator>Stratakis, Emmanuel</creator><creator>Tomanec, Ondřej</creator><creator>Beller, Matthias</creator><creator>Bakandritsos, Aristides</creator><creator>Zbořil, Radek</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4547-3931</orcidid><orcidid>https://orcid.org/0000-0003-4411-9348</orcidid><orcidid>https://orcid.org/0000-0002-2600-2245</orcidid><orcidid>https://orcid.org/0000-0003-2304-2564</orcidid><orcidid>https://orcid.org/0000-0001-5709-0965</orcidid><orcidid>https://orcid.org/0000-0001-6668-6381</orcidid><orcidid>https://orcid.org/0000-0002-1908-8618</orcidid><orcidid>https://orcid.org/0000-0002-3147-2196</orcidid></search><sort><creationdate>20220501</creationdate><title>Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst</title><author>Cheruvathoor Poulose, Aby ; Zoppellaro, Giorgio ; Konidakis, Ioannis ; Serpetzoglou, Efthymis ; Stratakis, Emmanuel ; Tomanec, Ondřej ; Beller, Matthias ; Bakandritsos, Aristides ; Zbořil, Radek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-2f974b57a20a87c9142990a5ae4e22fc767bef0401f2fd9887961fada372f4c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>140/125</topic><topic>140/133</topic><topic>140/146</topic><topic>639/301/299/890</topic><topic>639/638/77/887</topic><topic>639/925/357/354</topic><topic>Agrochemicals</topic><topic>Amines</topic><topic>Catalysts</topic><topic>Chalcopyrite</topic><topic>Chemical industry</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Earth</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin resonance</topic><topic>Energy</topic><topic>Energy conversion</topic><topic>Fourier transforms</topic><topic>Heavy metals</topic><topic>High temperature</topic><topic>Hydrogen</topic><topic>Hydrogenation</topic><topic>Iron</topic><topic>Lasers</topic><topic>Ligands</topic><topic>Light</topic><topic>Light effects</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Noble metals</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photothermal conversion</topic><topic>Plasmonics</topic><topic>Polymers</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><topic>Spectrum analysis</topic><topic>Ultrafast lasers</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheruvathoor Poulose, Aby</creatorcontrib><creatorcontrib>Zoppellaro, Giorgio</creatorcontrib><creatorcontrib>Konidakis, Ioannis</creatorcontrib><creatorcontrib>Serpetzoglou, Efthymis</creatorcontrib><creatorcontrib>Stratakis, Emmanuel</creatorcontrib><creatorcontrib>Tomanec, Ondřej</creatorcontrib><creatorcontrib>Beller, Matthias</creatorcontrib><creatorcontrib>Bakandritsos, Aristides</creatorcontrib><creatorcontrib>Zbořil, Radek</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheruvathoor Poulose, Aby</au><au>Zoppellaro, Giorgio</au><au>Konidakis, Ioannis</au><au>Serpetzoglou, Efthymis</au><au>Stratakis, Emmanuel</au><au>Tomanec, Ondřej</au><au>Beller, Matthias</au><au>Bakandritsos, Aristides</au><au>Zbořil, Radek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>17</volume><issue>5</issue><spage>485</spage><epage>492</epage><pages>485-492</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Reduction of nitroaromatics to the corresponding amines is a key process in the fine and bulk chemicals industry to produce polymers, pharmaceuticals, agrochemicals and dyes. However, their effective and selective reduction requires high temperatures and pressurized hydrogen and involves noble metal-based catalysts. Here we report on an earth-abundant, plasmonic nano-photocatalyst, with an excellent reaction rate towards the selective hydrogenation of nitroaromatics. With solar light as the only energy input, the chalcopyrite catalyst operates through the combined action of hot holes and photothermal effects. Ultrafast laser transient absorption and light-induced electron paramagnetic resonance spectroscopies have unveiled the energy matching of the hot holes in the valence band of the catalyst with the frontier orbitals of the hydrogen and electron donor, via a transient coordination intermediate. Consequently, the reusable and sustainable copper-iron-sulfide (CuFeS
2
) catalyst delivers previously unattainable turnover frequencies, even in large-scale reactions, while the cost-normalized production rate stands an order of magnitude above the state of the art.
A low-cost plasmonic photocatalyst based on earth-abundant metals (Fe, Cu) maximizes solar energy conversion due to the concerted interplay of energies and interactions between reactants and hot carriers, thus producing aromatic amines with a high yield.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35347273</pmid><doi>10.1038/s41565-022-01087-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4547-3931</orcidid><orcidid>https://orcid.org/0000-0003-4411-9348</orcidid><orcidid>https://orcid.org/0000-0002-2600-2245</orcidid><orcidid>https://orcid.org/0000-0003-2304-2564</orcidid><orcidid>https://orcid.org/0000-0001-5709-0965</orcidid><orcidid>https://orcid.org/0000-0001-6668-6381</orcidid><orcidid>https://orcid.org/0000-0002-1908-8618</orcidid><orcidid>https://orcid.org/0000-0002-3147-2196</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2022-05, Vol.17 (5), p.485-492 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9117130 |
source | SpringerLink Journals; Nature |
subjects | 140/125 140/133 140/146 639/301/299/890 639/638/77/887 639/925/357/354 Agrochemicals Amines Catalysts Chalcopyrite Chemical industry Chemistry and Materials Science Copper Crystal structure Earth Electron paramagnetic resonance Electron spin resonance Energy Energy conversion Fourier transforms Heavy metals High temperature Hydrogen Hydrogenation Iron Lasers Ligands Light Light effects Materials Science Nanotechnology Nanotechnology and Microengineering Noble metals Photocatalysis Photocatalysts Photothermal conversion Plasmonics Polymers Solar energy Solar energy conversion Spectrum analysis Ultrafast lasers Valence band |
title | Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20selective%20reduction%20of%20nitroarenes%20under%20visible%20light%20with%20an%20earth-abundant%20plasmonic%20photocatalyst&rft.jtitle=Nature%20nanotechnology&rft.au=Cheruvathoor%20Poulose,%20Aby&rft.date=2022-05-01&rft.volume=17&rft.issue=5&rft.spage=485&rft.epage=492&rft.pages=485-492&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-022-01087-3&rft_dat=%3Cproquest_pubme%3E2644938105%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666129307&rft_id=info:pmid/35347273&rfr_iscdi=true |