A statistical approach to knot confinement via persistent homology
In this paper, we study how randomly generated knots occupy a volume of space using topological methods. To this end, we consider the evolution of the first homology of an immersed metric neighbourhood of a knot's embedding for growing radii. Specifically, we extract features from the persisten...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2022-05, Vol.478 (2261), p.20210709-20210709 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20210709 |
---|---|
container_issue | 2261 |
container_start_page | 20210709 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 478 |
creator | Celoria, Daniele Mahler, Barbara I |
description | In this paper, we study how randomly generated knots occupy a volume of space using topological methods. To this end, we consider the evolution of the first homology of an immersed metric neighbourhood of a knot's embedding for growing radii. Specifically, we extract features from the persistent homology (PH) of the Vietoris-Rips complexes built from point clouds associated with knots. Statistical analysis of our data shows the existence of increasing correlations between geometric quantities associated with the embedding and PH-based features, as a function of the knots' lengths. We further study the variation of these correlations for different knot types. Finally, this framework also allows us to define a simple notion of deviation from ideal configurations of knots. |
doi_str_mv | 10.1098/rspa.2021.0709 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9116441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672322280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-b967e73bcc40d0258820d2dcb6eee838c6fedeb6ba3d949b381d614fd98f7e443</originalsourceid><addsrcrecordid>eNpVkL1PwzAQxS0EoqWwMqKMLAn-imMvSKXiS6rEArPlOE5rSOJgu5X635OopYLp7vTevTv9ALhGMENQ8DsfepVhiFEGCyhOwBTRAqVYUHY69ITRNB_ECbgI4RNCKHJenIMJyRnNGcRT8DBPQlTRhmi1ahLV994pvU6iS746FxPtutp2pjVdTLZWJb3xYTCP49q1rnGr3SU4q1UTzNWhzsDH0-P74iVdvj2_LubLVOdExLQUrDAFKbWmsII45xzDCle6ZMYYTrhmtalMyUpFKkFFSTiqGKJ1JXhdGErJDNzvc_tN2ZpKDz941cje21b5nXTKyv9KZ9dy5bZSIMQoRUPA7SHAu--NCVG2NmjTNKozbhMkZgUmGGMOB2u2t2rvQvCmPp5BUI7g5QhejuDlCH5YuPn73NH-S5r8ANvvgaw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672322280</pqid></control><display><type>article</type><title>A statistical approach to knot confinement via persistent homology</title><source>Alma/SFX Local Collection</source><creator>Celoria, Daniele ; Mahler, Barbara I</creator><creatorcontrib>Celoria, Daniele ; Mahler, Barbara I</creatorcontrib><description>In this paper, we study how randomly generated knots occupy a volume of space using topological methods. To this end, we consider the evolution of the first homology of an immersed metric neighbourhood of a knot's embedding for growing radii. Specifically, we extract features from the persistent homology (PH) of the Vietoris-Rips complexes built from point clouds associated with knots. Statistical analysis of our data shows the existence of increasing correlations between geometric quantities associated with the embedding and PH-based features, as a function of the knots' lengths. We further study the variation of these correlations for different knot types. Finally, this framework also allows us to define a simple notion of deviation from ideal configurations of knots.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2021.0709</identifier><identifier>PMID: 35645602</identifier><language>eng</language><publisher>England: The Royal Society</publisher><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2022-05, Vol.478 (2261), p.20210709-20210709</ispartof><rights>2022 The Authors.</rights><rights>2022 The Authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-b967e73bcc40d0258820d2dcb6eee838c6fedeb6ba3d949b381d614fd98f7e443</citedby><cites>FETCH-LOGICAL-c539t-b967e73bcc40d0258820d2dcb6eee838c6fedeb6ba3d949b381d614fd98f7e443</cites><orcidid>0000-0002-4693-1420 ; 0000-0001-9175-3865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35645602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Celoria, Daniele</creatorcontrib><creatorcontrib>Mahler, Barbara I</creatorcontrib><title>A statistical approach to knot confinement via persistent homology</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc Math Phys Eng Sci</addtitle><description>In this paper, we study how randomly generated knots occupy a volume of space using topological methods. To this end, we consider the evolution of the first homology of an immersed metric neighbourhood of a knot's embedding for growing radii. Specifically, we extract features from the persistent homology (PH) of the Vietoris-Rips complexes built from point clouds associated with knots. Statistical analysis of our data shows the existence of increasing correlations between geometric quantities associated with the embedding and PH-based features, as a function of the knots' lengths. We further study the variation of these correlations for different knot types. Finally, this framework also allows us to define a simple notion of deviation from ideal configurations of knots.</description><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkL1PwzAQxS0EoqWwMqKMLAn-imMvSKXiS6rEArPlOE5rSOJgu5X635OopYLp7vTevTv9ALhGMENQ8DsfepVhiFEGCyhOwBTRAqVYUHY69ITRNB_ECbgI4RNCKHJenIMJyRnNGcRT8DBPQlTRhmi1ahLV994pvU6iS746FxPtutp2pjVdTLZWJb3xYTCP49q1rnGr3SU4q1UTzNWhzsDH0-P74iVdvj2_LubLVOdExLQUrDAFKbWmsII45xzDCle6ZMYYTrhmtalMyUpFKkFFSTiqGKJ1JXhdGErJDNzvc_tN2ZpKDz941cje21b5nXTKyv9KZ9dy5bZSIMQoRUPA7SHAu--NCVG2NmjTNKozbhMkZgUmGGMOB2u2t2rvQvCmPp5BUI7g5QhejuDlCH5YuPn73NH-S5r8ANvvgaw</recordid><startdate>20220525</startdate><enddate>20220525</enddate><creator>Celoria, Daniele</creator><creator>Mahler, Barbara I</creator><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4693-1420</orcidid><orcidid>https://orcid.org/0000-0001-9175-3865</orcidid></search><sort><creationdate>20220525</creationdate><title>A statistical approach to knot confinement via persistent homology</title><author>Celoria, Daniele ; Mahler, Barbara I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-b967e73bcc40d0258820d2dcb6eee838c6fedeb6ba3d949b381d614fd98f7e443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Celoria, Daniele</creatorcontrib><creatorcontrib>Mahler, Barbara I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Celoria, Daniele</au><au>Mahler, Barbara I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A statistical approach to knot confinement via persistent homology</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><addtitle>Proc Math Phys Eng Sci</addtitle><date>2022-05-25</date><risdate>2022</risdate><volume>478</volume><issue>2261</issue><spage>20210709</spage><epage>20210709</epage><pages>20210709-20210709</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>In this paper, we study how randomly generated knots occupy a volume of space using topological methods. To this end, we consider the evolution of the first homology of an immersed metric neighbourhood of a knot's embedding for growing radii. Specifically, we extract features from the persistent homology (PH) of the Vietoris-Rips complexes built from point clouds associated with knots. Statistical analysis of our data shows the existence of increasing correlations between geometric quantities associated with the embedding and PH-based features, as a function of the knots' lengths. We further study the variation of these correlations for different knot types. Finally, this framework also allows us to define a simple notion of deviation from ideal configurations of knots.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>35645602</pmid><doi>10.1098/rspa.2021.0709</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4693-1420</orcidid><orcidid>https://orcid.org/0000-0001-9175-3865</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2022-05, Vol.478 (2261), p.20210709-20210709 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9116441 |
source | Alma/SFX Local Collection |
title | A statistical approach to knot confinement via persistent homology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A23%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20statistical%20approach%20to%20knot%20confinement%20via%20persistent%20homology&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Celoria,%20Daniele&rft.date=2022-05-25&rft.volume=478&rft.issue=2261&rft.spage=20210709&rft.epage=20210709&rft.pages=20210709-20210709&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2021.0709&rft_dat=%3Cproquest_pubme%3E2672322280%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672322280&rft_id=info:pmid/35645602&rfr_iscdi=true |