Developing algorithms for identifying major structural birth defects using automated electronic health data

Purpose Given the 2015 transition to International Classification of Diseases, Tenth Revision, Clinical Modification (ICD‐10‐CM) diagnostic coding, updates to our previously published algorithms for major structural birth defects (BDs) were necessary. Aims of this study were to update, validate, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacoepidemiology and drug safety 2021-02, Vol.30 (2), p.266-274
Hauptverfasser: Kharbanda, Elyse O., Vazquez‐Benitez, Gabriela, DeSilva, Malini B., Spaulding, Alicen B., Daley, Matthew F., Naleway, Allison L., Irving, Stephanie A., Klein, Nicola P., Tseng, Hung Fu, Jackson, Lisa A., Hambidge, Simon J., Olaiya, Oluwatosin, Panozzo, Catherine A., Myers, Tanya R., Romitti, Paul A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 274
container_issue 2
container_start_page 266
container_title Pharmacoepidemiology and drug safety
container_volume 30
creator Kharbanda, Elyse O.
Vazquez‐Benitez, Gabriela
DeSilva, Malini B.
Spaulding, Alicen B.
Daley, Matthew F.
Naleway, Allison L.
Irving, Stephanie A.
Klein, Nicola P.
Tseng, Hung Fu
Jackson, Lisa A.
Hambidge, Simon J.
Olaiya, Oluwatosin
Panozzo, Catherine A.
Myers, Tanya R.
Romitti, Paul A.
description Purpose Given the 2015 transition to International Classification of Diseases, Tenth Revision, Clinical Modification (ICD‐10‐CM) diagnostic coding, updates to our previously published algorithms for major structural birth defects (BDs) were necessary. Aims of this study were to update, validate, and refine algorithms for identifying selected BDs, and then to use these algorithms to describe BD prevalence in the vaccine safety datalink (VSD) population. Methods We converted our ICD‐9‐CM list of selected BDs to ICD‐10‐CM using available crosswalks with manual review of codes. We identified, chart reviewed, and adjudicated a sample of infants in the VSD with ≥2 ICD‐10‐CM diagnoses for one of seven common BDs. Positive predictive values (PPVs) were calculated; for BDs with suboptimal PPV, algorithms were refined. Final automated algorithms were applied to a cohort of live births delivered 10/1/2015–9/30/2017 at eight VSD sites to estimate BD prevalence. This research was approved by the HealthPartners Institutional Review Board, by all participating VSD sites, and by the CDC, with a waiver of informed consent. Results Of 573 infants with ≥2 diagnoses for a targeted BD, on adjudication, we classified 399 (69.6%) as probable cases, 31 (5.4%) as possible cases and 143 (25.0%) as not having the targeted BD. PPVs for the final BD algorithms ranged from 0.76 (hypospadias) to 1.0 (gastroschisis). Among 212 857 births over 2 years following transition to ICD‐10‐CM coding, prevalence for the full list of selected defects in the VSD was 1.8%. Conclusions Algorithms can identify infants with selected BDs using automated healthcare data with reasonable accuracy. Our updated algorithms can be used in observational studies of maternal vaccine safety and may be adapted for use in other surveillance systems.
doi_str_mv 10.1002/pds.5177
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9116134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463104267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4387-2e18b547a8008729345d2b33046fcd60e6492a9650b188a87ba14a20a4c16a883</originalsourceid><addsrcrecordid>eNp1kVtrFTEUhYMo9qLgL5ABX3yZmvvlRZDWqlBQUJ_DnpnMOTlmJsckUzn_3kxb6wV8ymavL4u1WQg9I_iMYExf7Yd8JohSD9Axwca0RAj1cJ0Fa7WQ5gid5LzDuGqGP0ZHjFFihJbH6NuFu3Yh7v28aSBsYvJlO-VmjKnxg5uLHw-rNMGubnJJS1-WBKHpfCrbZnCj60tulnzzfylxguKGxoW6TnH2fbN1EFYSCjxBj0YI2T29e0_R18u3X87ft1cf3304f3PV9pxp1VJHdCe4Ao2xVtQwLgbaMYa5HPtBYie5oWCkwB3RGrTqgHCgGHhPJGjNTtHrW9_90k1u6OsZNbLdJz9BOtgI3v6tzH5rN_HaGkIkYbwavLwzSPH74nKxk8-9CwFmF5dsKZeMYE6lquiLf9BdXNJcz6uUEhRjQeVvwz7FnJMb78MQbNcGbW3Qrg1W9Pmf4e_BX5VVoL0FfvjgDv81sp8uPt8Y_gS4NKZx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475200526</pqid></control><display><type>article</type><title>Developing algorithms for identifying major structural birth defects using automated electronic health data</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Kharbanda, Elyse O. ; Vazquez‐Benitez, Gabriela ; DeSilva, Malini B. ; Spaulding, Alicen B. ; Daley, Matthew F. ; Naleway, Allison L. ; Irving, Stephanie A. ; Klein, Nicola P. ; Tseng, Hung Fu ; Jackson, Lisa A. ; Hambidge, Simon J. ; Olaiya, Oluwatosin ; Panozzo, Catherine A. ; Myers, Tanya R. ; Romitti, Paul A.</creator><creatorcontrib>Kharbanda, Elyse O. ; Vazquez‐Benitez, Gabriela ; DeSilva, Malini B. ; Spaulding, Alicen B. ; Daley, Matthew F. ; Naleway, Allison L. ; Irving, Stephanie A. ; Klein, Nicola P. ; Tseng, Hung Fu ; Jackson, Lisa A. ; Hambidge, Simon J. ; Olaiya, Oluwatosin ; Panozzo, Catherine A. ; Myers, Tanya R. ; Romitti, Paul A.</creatorcontrib><description>Purpose Given the 2015 transition to International Classification of Diseases, Tenth Revision, Clinical Modification (ICD‐10‐CM) diagnostic coding, updates to our previously published algorithms for major structural birth defects (BDs) were necessary. Aims of this study were to update, validate, and refine algorithms for identifying selected BDs, and then to use these algorithms to describe BD prevalence in the vaccine safety datalink (VSD) population. Methods We converted our ICD‐9‐CM list of selected BDs to ICD‐10‐CM using available crosswalks with manual review of codes. We identified, chart reviewed, and adjudicated a sample of infants in the VSD with ≥2 ICD‐10‐CM diagnoses for one of seven common BDs. Positive predictive values (PPVs) were calculated; for BDs with suboptimal PPV, algorithms were refined. Final automated algorithms were applied to a cohort of live births delivered 10/1/2015–9/30/2017 at eight VSD sites to estimate BD prevalence. This research was approved by the HealthPartners Institutional Review Board, by all participating VSD sites, and by the CDC, with a waiver of informed consent. Results Of 573 infants with ≥2 diagnoses for a targeted BD, on adjudication, we classified 399 (69.6%) as probable cases, 31 (5.4%) as possible cases and 143 (25.0%) as not having the targeted BD. PPVs for the final BD algorithms ranged from 0.76 (hypospadias) to 1.0 (gastroschisis). Among 212 857 births over 2 years following transition to ICD‐10‐CM coding, prevalence for the full list of selected defects in the VSD was 1.8%. Conclusions Algorithms can identify infants with selected BDs using automated healthcare data with reasonable accuracy. Our updated algorithms can be used in observational studies of maternal vaccine safety and may be adapted for use in other surveillance systems.</description><identifier>ISSN: 1053-8569</identifier><identifier>EISSN: 1099-1557</identifier><identifier>DOI: 10.1002/pds.5177</identifier><identifier>PMID: 33219586</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Automation ; Birth defects ; Cohort Studies ; Congenital defects ; Electronic Health Records ; Humans ; ICD‐10 ; Infant ; Infants ; International Classification of Diseases ; Male ; pharmacoepidemiology ; pregnancy ; Prevalence ; Vaccines</subject><ispartof>Pharmacoepidemiology and drug safety, 2021-02, Vol.30 (2), p.266-274</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4387-2e18b547a8008729345d2b33046fcd60e6492a9650b188a87ba14a20a4c16a883</citedby><cites>FETCH-LOGICAL-c4387-2e18b547a8008729345d2b33046fcd60e6492a9650b188a87ba14a20a4c16a883</cites><orcidid>0000-0002-4957-8204 ; 0000-0003-1309-4096 ; 0000-0002-3359-5843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpds.5177$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpds.5177$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33219586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kharbanda, Elyse O.</creatorcontrib><creatorcontrib>Vazquez‐Benitez, Gabriela</creatorcontrib><creatorcontrib>DeSilva, Malini B.</creatorcontrib><creatorcontrib>Spaulding, Alicen B.</creatorcontrib><creatorcontrib>Daley, Matthew F.</creatorcontrib><creatorcontrib>Naleway, Allison L.</creatorcontrib><creatorcontrib>Irving, Stephanie A.</creatorcontrib><creatorcontrib>Klein, Nicola P.</creatorcontrib><creatorcontrib>Tseng, Hung Fu</creatorcontrib><creatorcontrib>Jackson, Lisa A.</creatorcontrib><creatorcontrib>Hambidge, Simon J.</creatorcontrib><creatorcontrib>Olaiya, Oluwatosin</creatorcontrib><creatorcontrib>Panozzo, Catherine A.</creatorcontrib><creatorcontrib>Myers, Tanya R.</creatorcontrib><creatorcontrib>Romitti, Paul A.</creatorcontrib><title>Developing algorithms for identifying major structural birth defects using automated electronic health data</title><title>Pharmacoepidemiology and drug safety</title><addtitle>Pharmacoepidemiol Drug Saf</addtitle><description>Purpose Given the 2015 transition to International Classification of Diseases, Tenth Revision, Clinical Modification (ICD‐10‐CM) diagnostic coding, updates to our previously published algorithms for major structural birth defects (BDs) were necessary. Aims of this study were to update, validate, and refine algorithms for identifying selected BDs, and then to use these algorithms to describe BD prevalence in the vaccine safety datalink (VSD) population. Methods We converted our ICD‐9‐CM list of selected BDs to ICD‐10‐CM using available crosswalks with manual review of codes. We identified, chart reviewed, and adjudicated a sample of infants in the VSD with ≥2 ICD‐10‐CM diagnoses for one of seven common BDs. Positive predictive values (PPVs) were calculated; for BDs with suboptimal PPV, algorithms were refined. Final automated algorithms were applied to a cohort of live births delivered 10/1/2015–9/30/2017 at eight VSD sites to estimate BD prevalence. This research was approved by the HealthPartners Institutional Review Board, by all participating VSD sites, and by the CDC, with a waiver of informed consent. Results Of 573 infants with ≥2 diagnoses for a targeted BD, on adjudication, we classified 399 (69.6%) as probable cases, 31 (5.4%) as possible cases and 143 (25.0%) as not having the targeted BD. PPVs for the final BD algorithms ranged from 0.76 (hypospadias) to 1.0 (gastroschisis). Among 212 857 births over 2 years following transition to ICD‐10‐CM coding, prevalence for the full list of selected defects in the VSD was 1.8%. Conclusions Algorithms can identify infants with selected BDs using automated healthcare data with reasonable accuracy. Our updated algorithms can be used in observational studies of maternal vaccine safety and may be adapted for use in other surveillance systems.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Birth defects</subject><subject>Cohort Studies</subject><subject>Congenital defects</subject><subject>Electronic Health Records</subject><subject>Humans</subject><subject>ICD‐10</subject><subject>Infant</subject><subject>Infants</subject><subject>International Classification of Diseases</subject><subject>Male</subject><subject>pharmacoepidemiology</subject><subject>pregnancy</subject><subject>Prevalence</subject><subject>Vaccines</subject><issn>1053-8569</issn><issn>1099-1557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kVtrFTEUhYMo9qLgL5ABX3yZmvvlRZDWqlBQUJ_DnpnMOTlmJsckUzn_3kxb6wV8ymavL4u1WQg9I_iMYExf7Yd8JohSD9Axwca0RAj1cJ0Fa7WQ5gid5LzDuGqGP0ZHjFFihJbH6NuFu3Yh7v28aSBsYvJlO-VmjKnxg5uLHw-rNMGubnJJS1-WBKHpfCrbZnCj60tulnzzfylxguKGxoW6TnH2fbN1EFYSCjxBj0YI2T29e0_R18u3X87ft1cf3304f3PV9pxp1VJHdCe4Ao2xVtQwLgbaMYa5HPtBYie5oWCkwB3RGrTqgHCgGHhPJGjNTtHrW9_90k1u6OsZNbLdJz9BOtgI3v6tzH5rN_HaGkIkYbwavLwzSPH74nKxk8-9CwFmF5dsKZeMYE6lquiLf9BdXNJcz6uUEhRjQeVvwz7FnJMb78MQbNcGbW3Qrg1W9Pmf4e_BX5VVoL0FfvjgDv81sp8uPt8Y_gS4NKZx</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Kharbanda, Elyse O.</creator><creator>Vazquez‐Benitez, Gabriela</creator><creator>DeSilva, Malini B.</creator><creator>Spaulding, Alicen B.</creator><creator>Daley, Matthew F.</creator><creator>Naleway, Allison L.</creator><creator>Irving, Stephanie A.</creator><creator>Klein, Nicola P.</creator><creator>Tseng, Hung Fu</creator><creator>Jackson, Lisa A.</creator><creator>Hambidge, Simon J.</creator><creator>Olaiya, Oluwatosin</creator><creator>Panozzo, Catherine A.</creator><creator>Myers, Tanya R.</creator><creator>Romitti, Paul A.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4957-8204</orcidid><orcidid>https://orcid.org/0000-0003-1309-4096</orcidid><orcidid>https://orcid.org/0000-0002-3359-5843</orcidid></search><sort><creationdate>202102</creationdate><title>Developing algorithms for identifying major structural birth defects using automated electronic health data</title><author>Kharbanda, Elyse O. ; Vazquez‐Benitez, Gabriela ; DeSilva, Malini B. ; Spaulding, Alicen B. ; Daley, Matthew F. ; Naleway, Allison L. ; Irving, Stephanie A. ; Klein, Nicola P. ; Tseng, Hung Fu ; Jackson, Lisa A. ; Hambidge, Simon J. ; Olaiya, Oluwatosin ; Panozzo, Catherine A. ; Myers, Tanya R. ; Romitti, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4387-2e18b547a8008729345d2b33046fcd60e6492a9650b188a87ba14a20a4c16a883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Birth defects</topic><topic>Cohort Studies</topic><topic>Congenital defects</topic><topic>Electronic Health Records</topic><topic>Humans</topic><topic>ICD‐10</topic><topic>Infant</topic><topic>Infants</topic><topic>International Classification of Diseases</topic><topic>Male</topic><topic>pharmacoepidemiology</topic><topic>pregnancy</topic><topic>Prevalence</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kharbanda, Elyse O.</creatorcontrib><creatorcontrib>Vazquez‐Benitez, Gabriela</creatorcontrib><creatorcontrib>DeSilva, Malini B.</creatorcontrib><creatorcontrib>Spaulding, Alicen B.</creatorcontrib><creatorcontrib>Daley, Matthew F.</creatorcontrib><creatorcontrib>Naleway, Allison L.</creatorcontrib><creatorcontrib>Irving, Stephanie A.</creatorcontrib><creatorcontrib>Klein, Nicola P.</creatorcontrib><creatorcontrib>Tseng, Hung Fu</creatorcontrib><creatorcontrib>Jackson, Lisa A.</creatorcontrib><creatorcontrib>Hambidge, Simon J.</creatorcontrib><creatorcontrib>Olaiya, Oluwatosin</creatorcontrib><creatorcontrib>Panozzo, Catherine A.</creatorcontrib><creatorcontrib>Myers, Tanya R.</creatorcontrib><creatorcontrib>Romitti, Paul A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pharmacoepidemiology and drug safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kharbanda, Elyse O.</au><au>Vazquez‐Benitez, Gabriela</au><au>DeSilva, Malini B.</au><au>Spaulding, Alicen B.</au><au>Daley, Matthew F.</au><au>Naleway, Allison L.</au><au>Irving, Stephanie A.</au><au>Klein, Nicola P.</au><au>Tseng, Hung Fu</au><au>Jackson, Lisa A.</au><au>Hambidge, Simon J.</au><au>Olaiya, Oluwatosin</au><au>Panozzo, Catherine A.</au><au>Myers, Tanya R.</au><au>Romitti, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing algorithms for identifying major structural birth defects using automated electronic health data</atitle><jtitle>Pharmacoepidemiology and drug safety</jtitle><addtitle>Pharmacoepidemiol Drug Saf</addtitle><date>2021-02</date><risdate>2021</risdate><volume>30</volume><issue>2</issue><spage>266</spage><epage>274</epage><pages>266-274</pages><issn>1053-8569</issn><eissn>1099-1557</eissn><abstract>Purpose Given the 2015 transition to International Classification of Diseases, Tenth Revision, Clinical Modification (ICD‐10‐CM) diagnostic coding, updates to our previously published algorithms for major structural birth defects (BDs) were necessary. Aims of this study were to update, validate, and refine algorithms for identifying selected BDs, and then to use these algorithms to describe BD prevalence in the vaccine safety datalink (VSD) population. Methods We converted our ICD‐9‐CM list of selected BDs to ICD‐10‐CM using available crosswalks with manual review of codes. We identified, chart reviewed, and adjudicated a sample of infants in the VSD with ≥2 ICD‐10‐CM diagnoses for one of seven common BDs. Positive predictive values (PPVs) were calculated; for BDs with suboptimal PPV, algorithms were refined. Final automated algorithms were applied to a cohort of live births delivered 10/1/2015–9/30/2017 at eight VSD sites to estimate BD prevalence. This research was approved by the HealthPartners Institutional Review Board, by all participating VSD sites, and by the CDC, with a waiver of informed consent. Results Of 573 infants with ≥2 diagnoses for a targeted BD, on adjudication, we classified 399 (69.6%) as probable cases, 31 (5.4%) as possible cases and 143 (25.0%) as not having the targeted BD. PPVs for the final BD algorithms ranged from 0.76 (hypospadias) to 1.0 (gastroschisis). Among 212 857 births over 2 years following transition to ICD‐10‐CM coding, prevalence for the full list of selected defects in the VSD was 1.8%. Conclusions Algorithms can identify infants with selected BDs using automated healthcare data with reasonable accuracy. Our updated algorithms can be used in observational studies of maternal vaccine safety and may be adapted for use in other surveillance systems.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33219586</pmid><doi>10.1002/pds.5177</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4957-8204</orcidid><orcidid>https://orcid.org/0000-0003-1309-4096</orcidid><orcidid>https://orcid.org/0000-0002-3359-5843</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8569
ispartof Pharmacoepidemiology and drug safety, 2021-02, Vol.30 (2), p.266-274
issn 1053-8569
1099-1557
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9116134
source MEDLINE; Access via Wiley Online Library
subjects Algorithms
Automation
Birth defects
Cohort Studies
Congenital defects
Electronic Health Records
Humans
ICD‐10
Infant
Infants
International Classification of Diseases
Male
pharmacoepidemiology
pregnancy
Prevalence
Vaccines
title Developing algorithms for identifying major structural birth defects using automated electronic health data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20algorithms%20for%20identifying%20major%20structural%20birth%20defects%20using%20automated%20electronic%20health%20data&rft.jtitle=Pharmacoepidemiology%20and%20drug%20safety&rft.au=Kharbanda,%20Elyse%20O.&rft.date=2021-02&rft.volume=30&rft.issue=2&rft.spage=266&rft.epage=274&rft.pages=266-274&rft.issn=1053-8569&rft.eissn=1099-1557&rft_id=info:doi/10.1002/pds.5177&rft_dat=%3Cproquest_pubme%3E2463104267%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475200526&rft_id=info:pmid/33219586&rfr_iscdi=true