Small cyclic sodium channel inhibitors

[Display omitted] Voltage-gated sodium (NaV) channels play crucial roles in a range of (patho)physiological processes. Much interest has arisen within the pharmaceutical industry to pursue these channels as analgesic targets following overwhelming evidence that NaV channel subtypes NaV1.7–NaV1.9 are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical pharmacology 2021-01, Vol.183, p.114291-114291, Article 114291
Hauptverfasser: Peigneur, Steve, da Costa Oliveira, Cristina, de Sousa Fonseca, Flávia Cristina, McMahon, Kirsten L., Mueller, Alexander, Cheneval, Olivier, Cristina Nogueira Freitas, Ana, Starobova, Hana, Dimitri Gama Duarte, Igor, Craik, David J., Vetter, Irina, de Lima, Maria Elena, Schroeder, Christina I., Tytgat, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114291
container_issue
container_start_page 114291
container_title Biochemical pharmacology
container_volume 183
creator Peigneur, Steve
da Costa Oliveira, Cristina
de Sousa Fonseca, Flávia Cristina
McMahon, Kirsten L.
Mueller, Alexander
Cheneval, Olivier
Cristina Nogueira Freitas, Ana
Starobova, Hana
Dimitri Gama Duarte, Igor
Craik, David J.
Vetter, Irina
de Lima, Maria Elena
Schroeder, Christina I.
Tytgat, Jan
description [Display omitted] Voltage-gated sodium (NaV) channels play crucial roles in a range of (patho)physiological processes. Much interest has arisen within the pharmaceutical industry to pursue these channels as analgesic targets following overwhelming evidence that NaV channel subtypes NaV1.7–NaV1.9 are involved in nociception. More recently, NaV1.1, NaV1.3 and NaV1.6 have also been identified to be involved in pain pathways. Venom-derived disulfide-rich peptide toxins, isolated from spiders and cone snails, have been used extensively as probes to investigate these channels and have attracted much interest as drug leads. However, few peptide-based leads have made it as drugs due to unfavourable physiochemical attributes including poor in vivo pharmacokinetics and limited oral bioavailability. The present work aims to bridge the gap in the development pipeline between drug leads and drug candidates by downsizing these larger venom-derived NaV inhibitors into smaller, more “drug-like” molecules. Here, we use molecular engineering of small cyclic peptides to aid in the determination of what drives subtype selectivity and molecular interactions of these downsized inhibitors across NaV subtypes. We designed a series of small, stable and novel NaV probes displaying NaV subtype selectivity and potency in vitro coupled with potent in vivo analgesic activity, involving yet to be elucidated analgesic pathways in addition to NaV subtype modulation.
doi_str_mv 10.1016/j.bcp.2020.114291
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9116130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000629522030527X</els_id><sourcerecordid>33075312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-82c78eecb7892d9b216a27ae4732384accbf5a5ce2527850c252de52d211c8503</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlZ_gBfpydvWTLIfWQRBil9Q8KCeQ3Z2alP2oyTbQv-9WVaLXjwMMy-Z9x3yMHYJfAYc0pv1rMDNTHARNMQihyM2BpXJSOSpOmZjznka5kSM2Jn3616qFE7ZSEqeJRLEmF2_1aaqprjHyuLUt6Xd1lNcmaahamqblS1s1zp_zk6WpvJ08d0n7OPx4X3-HC1en17m94sI4wS6SAnMFBEWmcpFmRcCUiMyQ3EmhVSxQSyWiUmQRCIylXAMvaRQAgCDlhN2N-RutkVNJVLTOVPpjbO1cXvdGqv_vjR2pT_bnc4BUpB9AAwB6FrvHS0PXuC6h6bXOkDTPTQ9QAueq99HD44fSmHhdlig8PWdJac9WmqQSusIO1229p_4L508fK0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Small cyclic sodium channel inhibitors</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Peigneur, Steve ; da Costa Oliveira, Cristina ; de Sousa Fonseca, Flávia Cristina ; McMahon, Kirsten L. ; Mueller, Alexander ; Cheneval, Olivier ; Cristina Nogueira Freitas, Ana ; Starobova, Hana ; Dimitri Gama Duarte, Igor ; Craik, David J. ; Vetter, Irina ; de Lima, Maria Elena ; Schroeder, Christina I. ; Tytgat, Jan</creator><creatorcontrib>Peigneur, Steve ; da Costa Oliveira, Cristina ; de Sousa Fonseca, Flávia Cristina ; McMahon, Kirsten L. ; Mueller, Alexander ; Cheneval, Olivier ; Cristina Nogueira Freitas, Ana ; Starobova, Hana ; Dimitri Gama Duarte, Igor ; Craik, David J. ; Vetter, Irina ; de Lima, Maria Elena ; Schroeder, Christina I. ; Tytgat, Jan</creatorcontrib><description>[Display omitted] Voltage-gated sodium (NaV) channels play crucial roles in a range of (patho)physiological processes. Much interest has arisen within the pharmaceutical industry to pursue these channels as analgesic targets following overwhelming evidence that NaV channel subtypes NaV1.7–NaV1.9 are involved in nociception. More recently, NaV1.1, NaV1.3 and NaV1.6 have also been identified to be involved in pain pathways. Venom-derived disulfide-rich peptide toxins, isolated from spiders and cone snails, have been used extensively as probes to investigate these channels and have attracted much interest as drug leads. However, few peptide-based leads have made it as drugs due to unfavourable physiochemical attributes including poor in vivo pharmacokinetics and limited oral bioavailability. The present work aims to bridge the gap in the development pipeline between drug leads and drug candidates by downsizing these larger venom-derived NaV inhibitors into smaller, more “drug-like” molecules. Here, we use molecular engineering of small cyclic peptides to aid in the determination of what drives subtype selectivity and molecular interactions of these downsized inhibitors across NaV subtypes. We designed a series of small, stable and novel NaV probes displaying NaV subtype selectivity and potency in vitro coupled with potent in vivo analgesic activity, involving yet to be elucidated analgesic pathways in addition to NaV subtype modulation.</description><identifier>ISSN: 0006-2952</identifier><identifier>EISSN: 1873-2968</identifier><identifier>DOI: 10.1016/j.bcp.2020.114291</identifier><identifier>PMID: 33075312</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Animals ; Cone snail toxin ; Cyclic peptide ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Nociception ; Pain ; Peptide Fragments - chemistry ; Peptide Fragments - pharmacology ; Scorpion Venoms - chemistry ; Scorpion Venoms - pharmacology ; Spider toxin ; Voltage gated sodium channel ; Voltage-Gated Sodium Channel Blockers - chemistry ; Voltage-Gated Sodium Channel Blockers - pharmacology ; Voltage-Gated Sodium Channels - physiology ; Xenopus laevis</subject><ispartof>Biochemical pharmacology, 2021-01, Vol.183, p.114291-114291, Article 114291</ispartof><rights>2020</rights><rights>Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-82c78eecb7892d9b216a27ae4732384accbf5a5ce2527850c252de52d211c8503</citedby><cites>FETCH-LOGICAL-c451t-82c78eecb7892d9b216a27ae4732384accbf5a5ce2527850c252de52d211c8503</cites><orcidid>0000-0002-3594-9588 ; 0000-0003-0007-6796 ; 0000-0002-6737-6374 ; 0000-0003-0504-5702 ; 0000-0002-7447-1310 ; 0000-0001-9401-1744 ; 0000-0001-8254-0235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000629522030527X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33075312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peigneur, Steve</creatorcontrib><creatorcontrib>da Costa Oliveira, Cristina</creatorcontrib><creatorcontrib>de Sousa Fonseca, Flávia Cristina</creatorcontrib><creatorcontrib>McMahon, Kirsten L.</creatorcontrib><creatorcontrib>Mueller, Alexander</creatorcontrib><creatorcontrib>Cheneval, Olivier</creatorcontrib><creatorcontrib>Cristina Nogueira Freitas, Ana</creatorcontrib><creatorcontrib>Starobova, Hana</creatorcontrib><creatorcontrib>Dimitri Gama Duarte, Igor</creatorcontrib><creatorcontrib>Craik, David J.</creatorcontrib><creatorcontrib>Vetter, Irina</creatorcontrib><creatorcontrib>de Lima, Maria Elena</creatorcontrib><creatorcontrib>Schroeder, Christina I.</creatorcontrib><creatorcontrib>Tytgat, Jan</creatorcontrib><title>Small cyclic sodium channel inhibitors</title><title>Biochemical pharmacology</title><addtitle>Biochem Pharmacol</addtitle><description>[Display omitted] Voltage-gated sodium (NaV) channels play crucial roles in a range of (patho)physiological processes. Much interest has arisen within the pharmaceutical industry to pursue these channels as analgesic targets following overwhelming evidence that NaV channel subtypes NaV1.7–NaV1.9 are involved in nociception. More recently, NaV1.1, NaV1.3 and NaV1.6 have also been identified to be involved in pain pathways. Venom-derived disulfide-rich peptide toxins, isolated from spiders and cone snails, have been used extensively as probes to investigate these channels and have attracted much interest as drug leads. However, few peptide-based leads have made it as drugs due to unfavourable physiochemical attributes including poor in vivo pharmacokinetics and limited oral bioavailability. The present work aims to bridge the gap in the development pipeline between drug leads and drug candidates by downsizing these larger venom-derived NaV inhibitors into smaller, more “drug-like” molecules. Here, we use molecular engineering of small cyclic peptides to aid in the determination of what drives subtype selectivity and molecular interactions of these downsized inhibitors across NaV subtypes. We designed a series of small, stable and novel NaV probes displaying NaV subtype selectivity and potency in vitro coupled with potent in vivo analgesic activity, involving yet to be elucidated analgesic pathways in addition to NaV subtype modulation.</description><subject>Animals</subject><subject>Cone snail toxin</subject><subject>Cyclic peptide</subject><subject>Female</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nociception</subject><subject>Pain</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - pharmacology</subject><subject>Scorpion Venoms - chemistry</subject><subject>Scorpion Venoms - pharmacology</subject><subject>Spider toxin</subject><subject>Voltage gated sodium channel</subject><subject>Voltage-Gated Sodium Channel Blockers - chemistry</subject><subject>Voltage-Gated Sodium Channel Blockers - pharmacology</subject><subject>Voltage-Gated Sodium Channels - physiology</subject><subject>Xenopus laevis</subject><issn>0006-2952</issn><issn>1873-2968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotlZ_gBfpydvWTLIfWQRBil9Q8KCeQ3Z2alP2oyTbQv-9WVaLXjwMMy-Z9x3yMHYJfAYc0pv1rMDNTHARNMQihyM2BpXJSOSpOmZjznka5kSM2Jn3616qFE7ZSEqeJRLEmF2_1aaqprjHyuLUt6Xd1lNcmaahamqblS1s1zp_zk6WpvJ08d0n7OPx4X3-HC1en17m94sI4wS6SAnMFBEWmcpFmRcCUiMyQ3EmhVSxQSyWiUmQRCIylXAMvaRQAgCDlhN2N-RutkVNJVLTOVPpjbO1cXvdGqv_vjR2pT_bnc4BUpB9AAwB6FrvHS0PXuC6h6bXOkDTPTQ9QAueq99HD44fSmHhdlig8PWdJac9WmqQSusIO1229p_4L508fK0</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Peigneur, Steve</creator><creator>da Costa Oliveira, Cristina</creator><creator>de Sousa Fonseca, Flávia Cristina</creator><creator>McMahon, Kirsten L.</creator><creator>Mueller, Alexander</creator><creator>Cheneval, Olivier</creator><creator>Cristina Nogueira Freitas, Ana</creator><creator>Starobova, Hana</creator><creator>Dimitri Gama Duarte, Igor</creator><creator>Craik, David J.</creator><creator>Vetter, Irina</creator><creator>de Lima, Maria Elena</creator><creator>Schroeder, Christina I.</creator><creator>Tytgat, Jan</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3594-9588</orcidid><orcidid>https://orcid.org/0000-0003-0007-6796</orcidid><orcidid>https://orcid.org/0000-0002-6737-6374</orcidid><orcidid>https://orcid.org/0000-0003-0504-5702</orcidid><orcidid>https://orcid.org/0000-0002-7447-1310</orcidid><orcidid>https://orcid.org/0000-0001-9401-1744</orcidid><orcidid>https://orcid.org/0000-0001-8254-0235</orcidid></search><sort><creationdate>20210101</creationdate><title>Small cyclic sodium channel inhibitors</title><author>Peigneur, Steve ; da Costa Oliveira, Cristina ; de Sousa Fonseca, Flávia Cristina ; McMahon, Kirsten L. ; Mueller, Alexander ; Cheneval, Olivier ; Cristina Nogueira Freitas, Ana ; Starobova, Hana ; Dimitri Gama Duarte, Igor ; Craik, David J. ; Vetter, Irina ; de Lima, Maria Elena ; Schroeder, Christina I. ; Tytgat, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-82c78eecb7892d9b216a27ae4732384accbf5a5ce2527850c252de52d211c8503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Cone snail toxin</topic><topic>Cyclic peptide</topic><topic>Female</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nociception</topic><topic>Pain</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - pharmacology</topic><topic>Scorpion Venoms - chemistry</topic><topic>Scorpion Venoms - pharmacology</topic><topic>Spider toxin</topic><topic>Voltage gated sodium channel</topic><topic>Voltage-Gated Sodium Channel Blockers - chemistry</topic><topic>Voltage-Gated Sodium Channel Blockers - pharmacology</topic><topic>Voltage-Gated Sodium Channels - physiology</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peigneur, Steve</creatorcontrib><creatorcontrib>da Costa Oliveira, Cristina</creatorcontrib><creatorcontrib>de Sousa Fonseca, Flávia Cristina</creatorcontrib><creatorcontrib>McMahon, Kirsten L.</creatorcontrib><creatorcontrib>Mueller, Alexander</creatorcontrib><creatorcontrib>Cheneval, Olivier</creatorcontrib><creatorcontrib>Cristina Nogueira Freitas, Ana</creatorcontrib><creatorcontrib>Starobova, Hana</creatorcontrib><creatorcontrib>Dimitri Gama Duarte, Igor</creatorcontrib><creatorcontrib>Craik, David J.</creatorcontrib><creatorcontrib>Vetter, Irina</creatorcontrib><creatorcontrib>de Lima, Maria Elena</creatorcontrib><creatorcontrib>Schroeder, Christina I.</creatorcontrib><creatorcontrib>Tytgat, Jan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peigneur, Steve</au><au>da Costa Oliveira, Cristina</au><au>de Sousa Fonseca, Flávia Cristina</au><au>McMahon, Kirsten L.</au><au>Mueller, Alexander</au><au>Cheneval, Olivier</au><au>Cristina Nogueira Freitas, Ana</au><au>Starobova, Hana</au><au>Dimitri Gama Duarte, Igor</au><au>Craik, David J.</au><au>Vetter, Irina</au><au>de Lima, Maria Elena</au><au>Schroeder, Christina I.</au><au>Tytgat, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small cyclic sodium channel inhibitors</atitle><jtitle>Biochemical pharmacology</jtitle><addtitle>Biochem Pharmacol</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>183</volume><spage>114291</spage><epage>114291</epage><pages>114291-114291</pages><artnum>114291</artnum><issn>0006-2952</issn><eissn>1873-2968</eissn><abstract>[Display omitted] Voltage-gated sodium (NaV) channels play crucial roles in a range of (patho)physiological processes. Much interest has arisen within the pharmaceutical industry to pursue these channels as analgesic targets following overwhelming evidence that NaV channel subtypes NaV1.7–NaV1.9 are involved in nociception. More recently, NaV1.1, NaV1.3 and NaV1.6 have also been identified to be involved in pain pathways. Venom-derived disulfide-rich peptide toxins, isolated from spiders and cone snails, have been used extensively as probes to investigate these channels and have attracted much interest as drug leads. However, few peptide-based leads have made it as drugs due to unfavourable physiochemical attributes including poor in vivo pharmacokinetics and limited oral bioavailability. The present work aims to bridge the gap in the development pipeline between drug leads and drug candidates by downsizing these larger venom-derived NaV inhibitors into smaller, more “drug-like” molecules. Here, we use molecular engineering of small cyclic peptides to aid in the determination of what drives subtype selectivity and molecular interactions of these downsized inhibitors across NaV subtypes. We designed a series of small, stable and novel NaV probes displaying NaV subtype selectivity and potency in vitro coupled with potent in vivo analgesic activity, involving yet to be elucidated analgesic pathways in addition to NaV subtype modulation.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>33075312</pmid><doi>10.1016/j.bcp.2020.114291</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3594-9588</orcidid><orcidid>https://orcid.org/0000-0003-0007-6796</orcidid><orcidid>https://orcid.org/0000-0002-6737-6374</orcidid><orcidid>https://orcid.org/0000-0003-0504-5702</orcidid><orcidid>https://orcid.org/0000-0002-7447-1310</orcidid><orcidid>https://orcid.org/0000-0001-9401-1744</orcidid><orcidid>https://orcid.org/0000-0001-8254-0235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2952
ispartof Biochemical pharmacology, 2021-01, Vol.183, p.114291-114291, Article 114291
issn 0006-2952
1873-2968
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9116130
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Cone snail toxin
Cyclic peptide
Female
Male
Mice
Mice, Inbred C57BL
Nociception
Pain
Peptide Fragments - chemistry
Peptide Fragments - pharmacology
Scorpion Venoms - chemistry
Scorpion Venoms - pharmacology
Spider toxin
Voltage gated sodium channel
Voltage-Gated Sodium Channel Blockers - chemistry
Voltage-Gated Sodium Channel Blockers - pharmacology
Voltage-Gated Sodium Channels - physiology
Xenopus laevis
title Small cyclic sodium channel inhibitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20cyclic%20sodium%20channel%20inhibitors&rft.jtitle=Biochemical%20pharmacology&rft.au=Peigneur,%20Steve&rft.date=2021-01-01&rft.volume=183&rft.spage=114291&rft.epage=114291&rft.pages=114291-114291&rft.artnum=114291&rft.issn=0006-2952&rft.eissn=1873-2968&rft_id=info:doi/10.1016/j.bcp.2020.114291&rft_dat=%3Cpubmed_cross%3E33075312%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33075312&rft_els_id=S000629522030527X&rfr_iscdi=true