Small cyclic sodium channel inhibitors
[Display omitted] Voltage-gated sodium (NaV) channels play crucial roles in a range of (patho)physiological processes. Much interest has arisen within the pharmaceutical industry to pursue these channels as analgesic targets following overwhelming evidence that NaV channel subtypes NaV1.7–NaV1.9 are...
Gespeichert in:
Veröffentlicht in: | Biochemical pharmacology 2021-01, Vol.183, p.114291-114291, Article 114291 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114291 |
---|---|
container_issue | |
container_start_page | 114291 |
container_title | Biochemical pharmacology |
container_volume | 183 |
creator | Peigneur, Steve da Costa Oliveira, Cristina de Sousa Fonseca, Flávia Cristina McMahon, Kirsten L. Mueller, Alexander Cheneval, Olivier Cristina Nogueira Freitas, Ana Starobova, Hana Dimitri Gama Duarte, Igor Craik, David J. Vetter, Irina de Lima, Maria Elena Schroeder, Christina I. Tytgat, Jan |
description | [Display omitted]
Voltage-gated sodium (NaV) channels play crucial roles in a range of (patho)physiological processes. Much interest has arisen within the pharmaceutical industry to pursue these channels as analgesic targets following overwhelming evidence that NaV channel subtypes NaV1.7–NaV1.9 are involved in nociception. More recently, NaV1.1, NaV1.3 and NaV1.6 have also been identified to be involved in pain pathways. Venom-derived disulfide-rich peptide toxins, isolated from spiders and cone snails, have been used extensively as probes to investigate these channels and have attracted much interest as drug leads. However, few peptide-based leads have made it as drugs due to unfavourable physiochemical attributes including poor in vivo pharmacokinetics and limited oral bioavailability. The present work aims to bridge the gap in the development pipeline between drug leads and drug candidates by downsizing these larger venom-derived NaV inhibitors into smaller, more “drug-like” molecules. Here, we use molecular engineering of small cyclic peptides to aid in the determination of what drives subtype selectivity and molecular interactions of these downsized inhibitors across NaV subtypes. We designed a series of small, stable and novel NaV probes displaying NaV subtype selectivity and potency in vitro coupled with potent in vivo analgesic activity, involving yet to be elucidated analgesic pathways in addition to NaV subtype modulation. |
doi_str_mv | 10.1016/j.bcp.2020.114291 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9116130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000629522030527X</els_id><sourcerecordid>33075312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-82c78eecb7892d9b216a27ae4732384accbf5a5ce2527850c252de52d211c8503</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlZ_gBfpydvWTLIfWQRBil9Q8KCeQ3Z2alP2oyTbQv-9WVaLXjwMMy-Z9x3yMHYJfAYc0pv1rMDNTHARNMQihyM2BpXJSOSpOmZjznka5kSM2Jn3616qFE7ZSEqeJRLEmF2_1aaqprjHyuLUt6Xd1lNcmaahamqblS1s1zp_zk6WpvJ08d0n7OPx4X3-HC1en17m94sI4wS6SAnMFBEWmcpFmRcCUiMyQ3EmhVSxQSyWiUmQRCIylXAMvaRQAgCDlhN2N-RutkVNJVLTOVPpjbO1cXvdGqv_vjR2pT_bnc4BUpB9AAwB6FrvHS0PXuC6h6bXOkDTPTQ9QAueq99HD44fSmHhdlig8PWdJac9WmqQSusIO1229p_4L508fK0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Small cyclic sodium channel inhibitors</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Peigneur, Steve ; da Costa Oliveira, Cristina ; de Sousa Fonseca, Flávia Cristina ; McMahon, Kirsten L. ; Mueller, Alexander ; Cheneval, Olivier ; Cristina Nogueira Freitas, Ana ; Starobova, Hana ; Dimitri Gama Duarte, Igor ; Craik, David J. ; Vetter, Irina ; de Lima, Maria Elena ; Schroeder, Christina I. ; Tytgat, Jan</creator><creatorcontrib>Peigneur, Steve ; da Costa Oliveira, Cristina ; de Sousa Fonseca, Flávia Cristina ; McMahon, Kirsten L. ; Mueller, Alexander ; Cheneval, Olivier ; Cristina Nogueira Freitas, Ana ; Starobova, Hana ; Dimitri Gama Duarte, Igor ; Craik, David J. ; Vetter, Irina ; de Lima, Maria Elena ; Schroeder, Christina I. ; Tytgat, Jan</creatorcontrib><description>[Display omitted]
Voltage-gated sodium (NaV) channels play crucial roles in a range of (patho)physiological processes. Much interest has arisen within the pharmaceutical industry to pursue these channels as analgesic targets following overwhelming evidence that NaV channel subtypes NaV1.7–NaV1.9 are involved in nociception. More recently, NaV1.1, NaV1.3 and NaV1.6 have also been identified to be involved in pain pathways. Venom-derived disulfide-rich peptide toxins, isolated from spiders and cone snails, have been used extensively as probes to investigate these channels and have attracted much interest as drug leads. However, few peptide-based leads have made it as drugs due to unfavourable physiochemical attributes including poor in vivo pharmacokinetics and limited oral bioavailability. The present work aims to bridge the gap in the development pipeline between drug leads and drug candidates by downsizing these larger venom-derived NaV inhibitors into smaller, more “drug-like” molecules. Here, we use molecular engineering of small cyclic peptides to aid in the determination of what drives subtype selectivity and molecular interactions of these downsized inhibitors across NaV subtypes. We designed a series of small, stable and novel NaV probes displaying NaV subtype selectivity and potency in vitro coupled with potent in vivo analgesic activity, involving yet to be elucidated analgesic pathways in addition to NaV subtype modulation.</description><identifier>ISSN: 0006-2952</identifier><identifier>EISSN: 1873-2968</identifier><identifier>DOI: 10.1016/j.bcp.2020.114291</identifier><identifier>PMID: 33075312</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Animals ; Cone snail toxin ; Cyclic peptide ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Nociception ; Pain ; Peptide Fragments - chemistry ; Peptide Fragments - pharmacology ; Scorpion Venoms - chemistry ; Scorpion Venoms - pharmacology ; Spider toxin ; Voltage gated sodium channel ; Voltage-Gated Sodium Channel Blockers - chemistry ; Voltage-Gated Sodium Channel Blockers - pharmacology ; Voltage-Gated Sodium Channels - physiology ; Xenopus laevis</subject><ispartof>Biochemical pharmacology, 2021-01, Vol.183, p.114291-114291, Article 114291</ispartof><rights>2020</rights><rights>Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-82c78eecb7892d9b216a27ae4732384accbf5a5ce2527850c252de52d211c8503</citedby><cites>FETCH-LOGICAL-c451t-82c78eecb7892d9b216a27ae4732384accbf5a5ce2527850c252de52d211c8503</cites><orcidid>0000-0002-3594-9588 ; 0000-0003-0007-6796 ; 0000-0002-6737-6374 ; 0000-0003-0504-5702 ; 0000-0002-7447-1310 ; 0000-0001-9401-1744 ; 0000-0001-8254-0235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000629522030527X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33075312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peigneur, Steve</creatorcontrib><creatorcontrib>da Costa Oliveira, Cristina</creatorcontrib><creatorcontrib>de Sousa Fonseca, Flávia Cristina</creatorcontrib><creatorcontrib>McMahon, Kirsten L.</creatorcontrib><creatorcontrib>Mueller, Alexander</creatorcontrib><creatorcontrib>Cheneval, Olivier</creatorcontrib><creatorcontrib>Cristina Nogueira Freitas, Ana</creatorcontrib><creatorcontrib>Starobova, Hana</creatorcontrib><creatorcontrib>Dimitri Gama Duarte, Igor</creatorcontrib><creatorcontrib>Craik, David J.</creatorcontrib><creatorcontrib>Vetter, Irina</creatorcontrib><creatorcontrib>de Lima, Maria Elena</creatorcontrib><creatorcontrib>Schroeder, Christina I.</creatorcontrib><creatorcontrib>Tytgat, Jan</creatorcontrib><title>Small cyclic sodium channel inhibitors</title><title>Biochemical pharmacology</title><addtitle>Biochem Pharmacol</addtitle><description>[Display omitted]
Voltage-gated sodium (NaV) channels play crucial roles in a range of (patho)physiological processes. Much interest has arisen within the pharmaceutical industry to pursue these channels as analgesic targets following overwhelming evidence that NaV channel subtypes NaV1.7–NaV1.9 are involved in nociception. More recently, NaV1.1, NaV1.3 and NaV1.6 have also been identified to be involved in pain pathways. Venom-derived disulfide-rich peptide toxins, isolated from spiders and cone snails, have been used extensively as probes to investigate these channels and have attracted much interest as drug leads. However, few peptide-based leads have made it as drugs due to unfavourable physiochemical attributes including poor in vivo pharmacokinetics and limited oral bioavailability. The present work aims to bridge the gap in the development pipeline between drug leads and drug candidates by downsizing these larger venom-derived NaV inhibitors into smaller, more “drug-like” molecules. Here, we use molecular engineering of small cyclic peptides to aid in the determination of what drives subtype selectivity and molecular interactions of these downsized inhibitors across NaV subtypes. We designed a series of small, stable and novel NaV probes displaying NaV subtype selectivity and potency in vitro coupled with potent in vivo analgesic activity, involving yet to be elucidated analgesic pathways in addition to NaV subtype modulation.</description><subject>Animals</subject><subject>Cone snail toxin</subject><subject>Cyclic peptide</subject><subject>Female</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nociception</subject><subject>Pain</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - pharmacology</subject><subject>Scorpion Venoms - chemistry</subject><subject>Scorpion Venoms - pharmacology</subject><subject>Spider toxin</subject><subject>Voltage gated sodium channel</subject><subject>Voltage-Gated Sodium Channel Blockers - chemistry</subject><subject>Voltage-Gated Sodium Channel Blockers - pharmacology</subject><subject>Voltage-Gated Sodium Channels - physiology</subject><subject>Xenopus laevis</subject><issn>0006-2952</issn><issn>1873-2968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotlZ_gBfpydvWTLIfWQRBil9Q8KCeQ3Z2alP2oyTbQv-9WVaLXjwMMy-Z9x3yMHYJfAYc0pv1rMDNTHARNMQihyM2BpXJSOSpOmZjznka5kSM2Jn3616qFE7ZSEqeJRLEmF2_1aaqprjHyuLUt6Xd1lNcmaahamqblS1s1zp_zk6WpvJ08d0n7OPx4X3-HC1en17m94sI4wS6SAnMFBEWmcpFmRcCUiMyQ3EmhVSxQSyWiUmQRCIylXAMvaRQAgCDlhN2N-RutkVNJVLTOVPpjbO1cXvdGqv_vjR2pT_bnc4BUpB9AAwB6FrvHS0PXuC6h6bXOkDTPTQ9QAueq99HD44fSmHhdlig8PWdJac9WmqQSusIO1229p_4L508fK0</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Peigneur, Steve</creator><creator>da Costa Oliveira, Cristina</creator><creator>de Sousa Fonseca, Flávia Cristina</creator><creator>McMahon, Kirsten L.</creator><creator>Mueller, Alexander</creator><creator>Cheneval, Olivier</creator><creator>Cristina Nogueira Freitas, Ana</creator><creator>Starobova, Hana</creator><creator>Dimitri Gama Duarte, Igor</creator><creator>Craik, David J.</creator><creator>Vetter, Irina</creator><creator>de Lima, Maria Elena</creator><creator>Schroeder, Christina I.</creator><creator>Tytgat, Jan</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3594-9588</orcidid><orcidid>https://orcid.org/0000-0003-0007-6796</orcidid><orcidid>https://orcid.org/0000-0002-6737-6374</orcidid><orcidid>https://orcid.org/0000-0003-0504-5702</orcidid><orcidid>https://orcid.org/0000-0002-7447-1310</orcidid><orcidid>https://orcid.org/0000-0001-9401-1744</orcidid><orcidid>https://orcid.org/0000-0001-8254-0235</orcidid></search><sort><creationdate>20210101</creationdate><title>Small cyclic sodium channel inhibitors</title><author>Peigneur, Steve ; da Costa Oliveira, Cristina ; de Sousa Fonseca, Flávia Cristina ; McMahon, Kirsten L. ; Mueller, Alexander ; Cheneval, Olivier ; Cristina Nogueira Freitas, Ana ; Starobova, Hana ; Dimitri Gama Duarte, Igor ; Craik, David J. ; Vetter, Irina ; de Lima, Maria Elena ; Schroeder, Christina I. ; Tytgat, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-82c78eecb7892d9b216a27ae4732384accbf5a5ce2527850c252de52d211c8503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Cone snail toxin</topic><topic>Cyclic peptide</topic><topic>Female</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nociception</topic><topic>Pain</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - pharmacology</topic><topic>Scorpion Venoms - chemistry</topic><topic>Scorpion Venoms - pharmacology</topic><topic>Spider toxin</topic><topic>Voltage gated sodium channel</topic><topic>Voltage-Gated Sodium Channel Blockers - chemistry</topic><topic>Voltage-Gated Sodium Channel Blockers - pharmacology</topic><topic>Voltage-Gated Sodium Channels - physiology</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peigneur, Steve</creatorcontrib><creatorcontrib>da Costa Oliveira, Cristina</creatorcontrib><creatorcontrib>de Sousa Fonseca, Flávia Cristina</creatorcontrib><creatorcontrib>McMahon, Kirsten L.</creatorcontrib><creatorcontrib>Mueller, Alexander</creatorcontrib><creatorcontrib>Cheneval, Olivier</creatorcontrib><creatorcontrib>Cristina Nogueira Freitas, Ana</creatorcontrib><creatorcontrib>Starobova, Hana</creatorcontrib><creatorcontrib>Dimitri Gama Duarte, Igor</creatorcontrib><creatorcontrib>Craik, David J.</creatorcontrib><creatorcontrib>Vetter, Irina</creatorcontrib><creatorcontrib>de Lima, Maria Elena</creatorcontrib><creatorcontrib>Schroeder, Christina I.</creatorcontrib><creatorcontrib>Tytgat, Jan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peigneur, Steve</au><au>da Costa Oliveira, Cristina</au><au>de Sousa Fonseca, Flávia Cristina</au><au>McMahon, Kirsten L.</au><au>Mueller, Alexander</au><au>Cheneval, Olivier</au><au>Cristina Nogueira Freitas, Ana</au><au>Starobova, Hana</au><au>Dimitri Gama Duarte, Igor</au><au>Craik, David J.</au><au>Vetter, Irina</au><au>de Lima, Maria Elena</au><au>Schroeder, Christina I.</au><au>Tytgat, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small cyclic sodium channel inhibitors</atitle><jtitle>Biochemical pharmacology</jtitle><addtitle>Biochem Pharmacol</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>183</volume><spage>114291</spage><epage>114291</epage><pages>114291-114291</pages><artnum>114291</artnum><issn>0006-2952</issn><eissn>1873-2968</eissn><abstract>[Display omitted]
Voltage-gated sodium (NaV) channels play crucial roles in a range of (patho)physiological processes. Much interest has arisen within the pharmaceutical industry to pursue these channels as analgesic targets following overwhelming evidence that NaV channel subtypes NaV1.7–NaV1.9 are involved in nociception. More recently, NaV1.1, NaV1.3 and NaV1.6 have also been identified to be involved in pain pathways. Venom-derived disulfide-rich peptide toxins, isolated from spiders and cone snails, have been used extensively as probes to investigate these channels and have attracted much interest as drug leads. However, few peptide-based leads have made it as drugs due to unfavourable physiochemical attributes including poor in vivo pharmacokinetics and limited oral bioavailability. The present work aims to bridge the gap in the development pipeline between drug leads and drug candidates by downsizing these larger venom-derived NaV inhibitors into smaller, more “drug-like” molecules. Here, we use molecular engineering of small cyclic peptides to aid in the determination of what drives subtype selectivity and molecular interactions of these downsized inhibitors across NaV subtypes. We designed a series of small, stable and novel NaV probes displaying NaV subtype selectivity and potency in vitro coupled with potent in vivo analgesic activity, involving yet to be elucidated analgesic pathways in addition to NaV subtype modulation.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>33075312</pmid><doi>10.1016/j.bcp.2020.114291</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3594-9588</orcidid><orcidid>https://orcid.org/0000-0003-0007-6796</orcidid><orcidid>https://orcid.org/0000-0002-6737-6374</orcidid><orcidid>https://orcid.org/0000-0003-0504-5702</orcidid><orcidid>https://orcid.org/0000-0002-7447-1310</orcidid><orcidid>https://orcid.org/0000-0001-9401-1744</orcidid><orcidid>https://orcid.org/0000-0001-8254-0235</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2952 |
ispartof | Biochemical pharmacology, 2021-01, Vol.183, p.114291-114291, Article 114291 |
issn | 0006-2952 1873-2968 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9116130 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Cone snail toxin Cyclic peptide Female Male Mice Mice, Inbred C57BL Nociception Pain Peptide Fragments - chemistry Peptide Fragments - pharmacology Scorpion Venoms - chemistry Scorpion Venoms - pharmacology Spider toxin Voltage gated sodium channel Voltage-Gated Sodium Channel Blockers - chemistry Voltage-Gated Sodium Channel Blockers - pharmacology Voltage-Gated Sodium Channels - physiology Xenopus laevis |
title | Small cyclic sodium channel inhibitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20cyclic%20sodium%20channel%20inhibitors&rft.jtitle=Biochemical%20pharmacology&rft.au=Peigneur,%20Steve&rft.date=2021-01-01&rft.volume=183&rft.spage=114291&rft.epage=114291&rft.pages=114291-114291&rft.artnum=114291&rft.issn=0006-2952&rft.eissn=1873-2968&rft_id=info:doi/10.1016/j.bcp.2020.114291&rft_dat=%3Cpubmed_cross%3E33075312%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33075312&rft_els_id=S000629522030527X&rfr_iscdi=true |