RNA promotes the formation of spatial compartments in the nucleus
RNA, DNA, and protein molecules are highly organized within three-dimensional (3D) structures in the nucleus. Although RNA has been proposed to play a role in nuclear organization, exploring this has been challenging because existing methods cannot measure higher-order RNA and DNA contacts within 3D...
Gespeichert in:
Veröffentlicht in: | Cell 2021-11, Vol.184 (23), p.5775-5790.e30 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5790.e30 |
---|---|
container_issue | 23 |
container_start_page | 5775 |
container_title | Cell |
container_volume | 184 |
creator | Quinodoz, Sofia A. Jachowicz, Joanna W. Bhat, Prashant Ollikainen, Noah Banerjee, Abhik K. Goronzy, Isabel N. Blanco, Mario R. Chovanec, Peter Chow, Amy Markaki, Yolanda Thai, Jasmine Plath, Kathrin Guttman, Mitchell |
description | RNA, DNA, and protein molecules are highly organized within three-dimensional (3D) structures in the nucleus. Although RNA has been proposed to play a role in nuclear organization, exploring this has been challenging because existing methods cannot measure higher-order RNA and DNA contacts within 3D structures. To address this, we developed RNA & DNA SPRITE (RD-SPRITE) to comprehensively map the spatial organization of RNA and DNA. These maps reveal higher-order RNA-chromatin structures associated with three major classes of nuclear function: RNA processing, heterochromatin assembly, and gene regulation. These data demonstrate that hundreds of ncRNAs form high-concentration territories throughout the nucleus, that specific RNAs are required to recruit various regulators into these territories, and that these RNAs can shape long-range DNA contacts, heterochromatin assembly, and gene expression. These results demonstrate a mechanism where RNAs form high-concentration territories, bind to diffusible regulators, and guide them into compartments to regulate essential nuclear functions.
[Display omitted]
•RNA & DNA SPRITE comprehensively maps the spatial organization of RNA and DNA•Hundreds of ncRNAs form high-concentration territories throughout the nucleus•ncRNAs recruit diffusible RNA and protein regulators into precise 3D structures•ncRNA compartments can shape DNA contacts, heterochromatin, and gene expression
Mapping the proximity of RNAs to DNA and to other RNAs elucidates how nuclear non-coding RNAs serve as spatial organizers controlling processes underpinning gene regulation. |
doi_str_mv | 10.1016/j.cell.2021.10.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9115877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867421012307</els_id><sourcerecordid>2594296466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-1169f3d5ee3faa50fcb000de9713b96bbe8321db1aab0c42c38a12b13e44c0e63</originalsourceid><addsrcrecordid>eNp9kEtr3DAUhUVpaCbT_oEuipfdeKIryQ9BCQxD84AhgdCuhSxfZzTYliPZA_n3lTOT0G66krj3nHMPHyFfga6AQn65Xxls2xWjDOJgRUF8IAugskgFFOwjWVAqWVrmhTgnFyHsKaVllmWfyDkXBZclZwuyfrxfJ4N3nRsxJOMOk8b5To_W9YlrkjDEr24T47pB-7HDfgyJ7V-F_WRanMJnctboNuCX07skv69__trcptuHm7vNepuajMGYAuSy4XWGyButM9qYKvapURbAK5lXFcY-UFegdUWNYIaXGlgFHIUwFHO-JFfH3GGqOqxNrOJ1qwZvO-1flNNW_bvp7U49uYOSAFlZFDHg-ynAu-cJw6g6G2aCukc3BcUyKZjMRT7fYkep8S4Ej837GaBqZq_2anaqmf08i-yj6dvfBd8tb7Cj4MdRgBHTwaJXwVjsDdbWoxlV7ez_8v8ArZmW7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2594296466</pqid></control><display><type>article</type><title>RNA promotes the formation of spatial compartments in the nucleus</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Quinodoz, Sofia A. ; Jachowicz, Joanna W. ; Bhat, Prashant ; Ollikainen, Noah ; Banerjee, Abhik K. ; Goronzy, Isabel N. ; Blanco, Mario R. ; Chovanec, Peter ; Chow, Amy ; Markaki, Yolanda ; Thai, Jasmine ; Plath, Kathrin ; Guttman, Mitchell</creator><creatorcontrib>Quinodoz, Sofia A. ; Jachowicz, Joanna W. ; Bhat, Prashant ; Ollikainen, Noah ; Banerjee, Abhik K. ; Goronzy, Isabel N. ; Blanco, Mario R. ; Chovanec, Peter ; Chow, Amy ; Markaki, Yolanda ; Thai, Jasmine ; Plath, Kathrin ; Guttman, Mitchell</creatorcontrib><description>RNA, DNA, and protein molecules are highly organized within three-dimensional (3D) structures in the nucleus. Although RNA has been proposed to play a role in nuclear organization, exploring this has been challenging because existing methods cannot measure higher-order RNA and DNA contacts within 3D structures. To address this, we developed RNA & DNA SPRITE (RD-SPRITE) to comprehensively map the spatial organization of RNA and DNA. These maps reveal higher-order RNA-chromatin structures associated with three major classes of nuclear function: RNA processing, heterochromatin assembly, and gene regulation. These data demonstrate that hundreds of ncRNAs form high-concentration territories throughout the nucleus, that specific RNAs are required to recruit various regulators into these territories, and that these RNAs can shape long-range DNA contacts, heterochromatin assembly, and gene expression. These results demonstrate a mechanism where RNAs form high-concentration territories, bind to diffusible regulators, and guide them into compartments to regulate essential nuclear functions.
[Display omitted]
•RNA & DNA SPRITE comprehensively maps the spatial organization of RNA and DNA•Hundreds of ncRNAs form high-concentration territories throughout the nucleus•ncRNAs recruit diffusible RNA and protein regulators into precise 3D structures•ncRNA compartments can shape DNA contacts, heterochromatin, and gene expression
Mapping the proximity of RNAs to DNA and to other RNAs elucidates how nuclear non-coding RNAs serve as spatial organizers controlling processes underpinning gene regulation.</description><identifier>ISSN: 0092-8674</identifier><identifier>ISSN: 1097-4172</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2021.10.014</identifier><identifier>PMID: 34739832</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; cajal bodies ; Cell Nucleus - drug effects ; Cell Nucleus - metabolism ; Chromobox Protein Homolog 5 - metabolism ; chromocenters ; Chromosomes - metabolism ; Dactinomycin - pharmacology ; DNA - metabolism ; DNA, Satellite - metabolism ; DNA-Binding Proteins - metabolism ; Female ; Genome ; HEK293 Cells ; Heterochromatin - metabolism ; histone locus bodies ; Humans ; lncRNAs ; Mice ; Models, Biological ; Multigene Family ; ncRNAs ; nuclear bodies ; nuclear structure ; RNA - metabolism ; RNA Polymerase II - metabolism ; RNA processing ; RNA Processing, Post-Transcriptional - drug effects ; RNA Processing, Post-Transcriptional - genetics ; RNA Splicing - genetics ; RNA, Long Noncoding - genetics ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA, Ribosomal - genetics ; RNA-Binding Proteins - metabolism ; Transcription, Genetic - drug effects</subject><ispartof>Cell, 2021-11, Vol.184 (23), p.5775-5790.e30</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-1169f3d5ee3faa50fcb000de9713b96bbe8321db1aab0c42c38a12b13e44c0e63</citedby><cites>FETCH-LOGICAL-c521t-1169f3d5ee3faa50fcb000de9713b96bbe8321db1aab0c42c38a12b13e44c0e63</cites><orcidid>0000-0003-3832-4871 ; 0000-0003-4748-9352 ; 0000-0001-7796-3372 ; 0000-0001-6013-2417 ; 0000-0002-9797-0104 ; 0000-0002-6713-9192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2021.10.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34739832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quinodoz, Sofia A.</creatorcontrib><creatorcontrib>Jachowicz, Joanna W.</creatorcontrib><creatorcontrib>Bhat, Prashant</creatorcontrib><creatorcontrib>Ollikainen, Noah</creatorcontrib><creatorcontrib>Banerjee, Abhik K.</creatorcontrib><creatorcontrib>Goronzy, Isabel N.</creatorcontrib><creatorcontrib>Blanco, Mario R.</creatorcontrib><creatorcontrib>Chovanec, Peter</creatorcontrib><creatorcontrib>Chow, Amy</creatorcontrib><creatorcontrib>Markaki, Yolanda</creatorcontrib><creatorcontrib>Thai, Jasmine</creatorcontrib><creatorcontrib>Plath, Kathrin</creatorcontrib><creatorcontrib>Guttman, Mitchell</creatorcontrib><title>RNA promotes the formation of spatial compartments in the nucleus</title><title>Cell</title><addtitle>Cell</addtitle><description>RNA, DNA, and protein molecules are highly organized within three-dimensional (3D) structures in the nucleus. Although RNA has been proposed to play a role in nuclear organization, exploring this has been challenging because existing methods cannot measure higher-order RNA and DNA contacts within 3D structures. To address this, we developed RNA & DNA SPRITE (RD-SPRITE) to comprehensively map the spatial organization of RNA and DNA. These maps reveal higher-order RNA-chromatin structures associated with three major classes of nuclear function: RNA processing, heterochromatin assembly, and gene regulation. These data demonstrate that hundreds of ncRNAs form high-concentration territories throughout the nucleus, that specific RNAs are required to recruit various regulators into these territories, and that these RNAs can shape long-range DNA contacts, heterochromatin assembly, and gene expression. These results demonstrate a mechanism where RNAs form high-concentration territories, bind to diffusible regulators, and guide them into compartments to regulate essential nuclear functions.
[Display omitted]
•RNA & DNA SPRITE comprehensively maps the spatial organization of RNA and DNA•Hundreds of ncRNAs form high-concentration territories throughout the nucleus•ncRNAs recruit diffusible RNA and protein regulators into precise 3D structures•ncRNA compartments can shape DNA contacts, heterochromatin, and gene expression
Mapping the proximity of RNAs to DNA and to other RNAs elucidates how nuclear non-coding RNAs serve as spatial organizers controlling processes underpinning gene regulation.</description><subject>Animals</subject><subject>cajal bodies</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - metabolism</subject><subject>Chromobox Protein Homolog 5 - metabolism</subject><subject>chromocenters</subject><subject>Chromosomes - metabolism</subject><subject>Dactinomycin - pharmacology</subject><subject>DNA - metabolism</subject><subject>DNA, Satellite - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Female</subject><subject>Genome</subject><subject>HEK293 Cells</subject><subject>Heterochromatin - metabolism</subject><subject>histone locus bodies</subject><subject>Humans</subject><subject>lncRNAs</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Multigene Family</subject><subject>ncRNAs</subject><subject>nuclear bodies</subject><subject>nuclear structure</subject><subject>RNA - metabolism</subject><subject>RNA Polymerase II - metabolism</subject><subject>RNA processing</subject><subject>RNA Processing, Post-Transcriptional - drug effects</subject><subject>RNA Processing, Post-Transcriptional - genetics</subject><subject>RNA Splicing - genetics</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Ribosomal - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Transcription, Genetic - drug effects</subject><issn>0092-8674</issn><issn>1097-4172</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtr3DAUhUVpaCbT_oEuipfdeKIryQ9BCQxD84AhgdCuhSxfZzTYliPZA_n3lTOT0G66krj3nHMPHyFfga6AQn65Xxls2xWjDOJgRUF8IAugskgFFOwjWVAqWVrmhTgnFyHsKaVllmWfyDkXBZclZwuyfrxfJ4N3nRsxJOMOk8b5To_W9YlrkjDEr24T47pB-7HDfgyJ7V-F_WRanMJnctboNuCX07skv69__trcptuHm7vNepuajMGYAuSy4XWGyButM9qYKvapURbAK5lXFcY-UFegdUWNYIaXGlgFHIUwFHO-JFfH3GGqOqxNrOJ1qwZvO-1flNNW_bvp7U49uYOSAFlZFDHg-ynAu-cJw6g6G2aCukc3BcUyKZjMRT7fYkep8S4Ej837GaBqZq_2anaqmf08i-yj6dvfBd8tb7Cj4MdRgBHTwaJXwVjsDdbWoxlV7ez_8v8ArZmW7Q</recordid><startdate>20211111</startdate><enddate>20211111</enddate><creator>Quinodoz, Sofia A.</creator><creator>Jachowicz, Joanna W.</creator><creator>Bhat, Prashant</creator><creator>Ollikainen, Noah</creator><creator>Banerjee, Abhik K.</creator><creator>Goronzy, Isabel N.</creator><creator>Blanco, Mario R.</creator><creator>Chovanec, Peter</creator><creator>Chow, Amy</creator><creator>Markaki, Yolanda</creator><creator>Thai, Jasmine</creator><creator>Plath, Kathrin</creator><creator>Guttman, Mitchell</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3832-4871</orcidid><orcidid>https://orcid.org/0000-0003-4748-9352</orcidid><orcidid>https://orcid.org/0000-0001-7796-3372</orcidid><orcidid>https://orcid.org/0000-0001-6013-2417</orcidid><orcidid>https://orcid.org/0000-0002-9797-0104</orcidid><orcidid>https://orcid.org/0000-0002-6713-9192</orcidid></search><sort><creationdate>20211111</creationdate><title>RNA promotes the formation of spatial compartments in the nucleus</title><author>Quinodoz, Sofia A. ; Jachowicz, Joanna W. ; Bhat, Prashant ; Ollikainen, Noah ; Banerjee, Abhik K. ; Goronzy, Isabel N. ; Blanco, Mario R. ; Chovanec, Peter ; Chow, Amy ; Markaki, Yolanda ; Thai, Jasmine ; Plath, Kathrin ; Guttman, Mitchell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-1169f3d5ee3faa50fcb000de9713b96bbe8321db1aab0c42c38a12b13e44c0e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>cajal bodies</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - metabolism</topic><topic>Chromobox Protein Homolog 5 - metabolism</topic><topic>chromocenters</topic><topic>Chromosomes - metabolism</topic><topic>Dactinomycin - pharmacology</topic><topic>DNA - metabolism</topic><topic>DNA, Satellite - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Female</topic><topic>Genome</topic><topic>HEK293 Cells</topic><topic>Heterochromatin - metabolism</topic><topic>histone locus bodies</topic><topic>Humans</topic><topic>lncRNAs</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Multigene Family</topic><topic>ncRNAs</topic><topic>nuclear bodies</topic><topic>nuclear structure</topic><topic>RNA - metabolism</topic><topic>RNA Polymerase II - metabolism</topic><topic>RNA processing</topic><topic>RNA Processing, Post-Transcriptional - drug effects</topic><topic>RNA Processing, Post-Transcriptional - genetics</topic><topic>RNA Splicing - genetics</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Ribosomal - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Transcription, Genetic - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quinodoz, Sofia A.</creatorcontrib><creatorcontrib>Jachowicz, Joanna W.</creatorcontrib><creatorcontrib>Bhat, Prashant</creatorcontrib><creatorcontrib>Ollikainen, Noah</creatorcontrib><creatorcontrib>Banerjee, Abhik K.</creatorcontrib><creatorcontrib>Goronzy, Isabel N.</creatorcontrib><creatorcontrib>Blanco, Mario R.</creatorcontrib><creatorcontrib>Chovanec, Peter</creatorcontrib><creatorcontrib>Chow, Amy</creatorcontrib><creatorcontrib>Markaki, Yolanda</creatorcontrib><creatorcontrib>Thai, Jasmine</creatorcontrib><creatorcontrib>Plath, Kathrin</creatorcontrib><creatorcontrib>Guttman, Mitchell</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quinodoz, Sofia A.</au><au>Jachowicz, Joanna W.</au><au>Bhat, Prashant</au><au>Ollikainen, Noah</au><au>Banerjee, Abhik K.</au><au>Goronzy, Isabel N.</au><au>Blanco, Mario R.</au><au>Chovanec, Peter</au><au>Chow, Amy</au><au>Markaki, Yolanda</au><au>Thai, Jasmine</au><au>Plath, Kathrin</au><au>Guttman, Mitchell</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNA promotes the formation of spatial compartments in the nucleus</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2021-11-11</date><risdate>2021</risdate><volume>184</volume><issue>23</issue><spage>5775</spage><epage>5790.e30</epage><pages>5775-5790.e30</pages><issn>0092-8674</issn><issn>1097-4172</issn><eissn>1097-4172</eissn><abstract>RNA, DNA, and protein molecules are highly organized within three-dimensional (3D) structures in the nucleus. Although RNA has been proposed to play a role in nuclear organization, exploring this has been challenging because existing methods cannot measure higher-order RNA and DNA contacts within 3D structures. To address this, we developed RNA & DNA SPRITE (RD-SPRITE) to comprehensively map the spatial organization of RNA and DNA. These maps reveal higher-order RNA-chromatin structures associated with three major classes of nuclear function: RNA processing, heterochromatin assembly, and gene regulation. These data demonstrate that hundreds of ncRNAs form high-concentration territories throughout the nucleus, that specific RNAs are required to recruit various regulators into these territories, and that these RNAs can shape long-range DNA contacts, heterochromatin assembly, and gene expression. These results demonstrate a mechanism where RNAs form high-concentration territories, bind to diffusible regulators, and guide them into compartments to regulate essential nuclear functions.
[Display omitted]
•RNA & DNA SPRITE comprehensively maps the spatial organization of RNA and DNA•Hundreds of ncRNAs form high-concentration territories throughout the nucleus•ncRNAs recruit diffusible RNA and protein regulators into precise 3D structures•ncRNA compartments can shape DNA contacts, heterochromatin, and gene expression
Mapping the proximity of RNAs to DNA and to other RNAs elucidates how nuclear non-coding RNAs serve as spatial organizers controlling processes underpinning gene regulation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34739832</pmid><doi>10.1016/j.cell.2021.10.014</doi><orcidid>https://orcid.org/0000-0003-3832-4871</orcidid><orcidid>https://orcid.org/0000-0003-4748-9352</orcidid><orcidid>https://orcid.org/0000-0001-7796-3372</orcidid><orcidid>https://orcid.org/0000-0001-6013-2417</orcidid><orcidid>https://orcid.org/0000-0002-9797-0104</orcidid><orcidid>https://orcid.org/0000-0002-6713-9192</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2021-11, Vol.184 (23), p.5775-5790.e30 |
issn | 0092-8674 1097-4172 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9115877 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Animals cajal bodies Cell Nucleus - drug effects Cell Nucleus - metabolism Chromobox Protein Homolog 5 - metabolism chromocenters Chromosomes - metabolism Dactinomycin - pharmacology DNA - metabolism DNA, Satellite - metabolism DNA-Binding Proteins - metabolism Female Genome HEK293 Cells Heterochromatin - metabolism histone locus bodies Humans lncRNAs Mice Models, Biological Multigene Family ncRNAs nuclear bodies nuclear structure RNA - metabolism RNA Polymerase II - metabolism RNA processing RNA Processing, Post-Transcriptional - drug effects RNA Processing, Post-Transcriptional - genetics RNA Splicing - genetics RNA, Long Noncoding - genetics RNA, Messenger - genetics RNA, Messenger - metabolism RNA, Ribosomal - genetics RNA-Binding Proteins - metabolism Transcription, Genetic - drug effects |
title | RNA promotes the formation of spatial compartments in the nucleus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNA%20promotes%20the%20formation%20of%20spatial%20compartments%20in%20the%20nucleus&rft.jtitle=Cell&rft.au=Quinodoz,%20Sofia%20A.&rft.date=2021-11-11&rft.volume=184&rft.issue=23&rft.spage=5775&rft.epage=5790.e30&rft.pages=5775-5790.e30&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2021.10.014&rft_dat=%3Cproquest_pubme%3E2594296466%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2594296466&rft_id=info:pmid/34739832&rft_els_id=S0092867421012307&rfr_iscdi=true |