Novel Risk Engine for Diabetes Progression and Mortality in USA: Building, Relating, Assessing, and Validating Outcomes (BRAVO)

Background There is an urgent need to update diabetes prediction, which has relied on the United Kingdom Prospective Diabetes Study (UKPDS) that dates back to 1970 s’ European populations. Objective The objective of this study was to develop a risk engine with multiple risk equations using a recent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PharmacoEconomics 2018-09, Vol.36 (9), p.1125-1134
Hauptverfasser: Shao, Hui, Fonseca, Vivian, Stoecker, Charles, Liu, Shuqian, Shi, Lizheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1134
container_issue 9
container_start_page 1125
container_title PharmacoEconomics
container_volume 36
creator Shao, Hui
Fonseca, Vivian
Stoecker, Charles
Liu, Shuqian
Shi, Lizheng
description Background There is an urgent need to update diabetes prediction, which has relied on the United Kingdom Prospective Diabetes Study (UKPDS) that dates back to 1970 s’ European populations. Objective The objective of this study was to develop a risk engine with multiple risk equations using a recent patient cohort with type 2 diabetes mellitus reflective of the US population. Methods A total of 17 risk equations for predicting diabetes-related microvascular and macrovascular events, hypoglycemia, mortality, and progression of diabetes risk factors were estimated using the data from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial ( n  = 10,251). Internal and external validation processes were used to assess performance of the Building, Relating, Assessing, and Validating Outcomes (BRAVO) risk engine. One-way sensitivity analysis was conducted to examine the impact of risk factors on mortality at the population level. Results The BRAVO risk engine added several risk factors including severe hypoglycemia and common US racial/ethnicity categories compared with the UKPDS risk engine. The BRAVO risk engine also modeled mortality escalation associated with intensive glycemic control (i.e., glycosylated hemoglobin 
doi_str_mv 10.1007/s40273-018-0662-1
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9115843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714601210</galeid><sourcerecordid>A714601210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-ea1e8478afe8d012cdac2d9a0650fba9c9752a157e290f9d2387f156270869cc3</originalsourceid><addsrcrecordid>eNp1Ustu1TAQjRCIPuAD2CBLbIpEisd5OGaBlD54SIWLLrRby9eZBLeJXeykUlf8Os69pbQI5IVHM-ec0bFPkjwDug-U8tchp4xnKYUqpWXJUniQbANwkbLYf7iuacpLQbeSnRDOKaVlxtnjZIsJzoqKw3by87O7wp4sTbggx7YzFknrPDkyaoUjBvLFu85jCMZZomxDPjk_qt6M18RYcvq1fkMOJtM3xnavyBJ7Na6rOoSZM5cz6SwymvWILKZRuyEK7x0s67PFyyfJo1b1AZ_e3LvJ6bvjb4cf0pPF-4-H9Umqi4yPKSrAKueVarFqKDDdKM0aoWhZ0HalhBa8YAoKjkzQVjQsq3gLRck4rUqhdbabvN3oXk6rARuNdvSql5feDMpfS6eMvD-x5rvs3JUUAEWVZ1Fg70bAux8ThlEOJmjse2XRTUEymhVs_g8RoS_-gp67ydtoTzIQkIHIizuoTvUojW1d3KtnUVlzyMvoEmhE7f8DFU-Dg9HOYmti_x4BNgTtXQge21uPQOWcGrlJjYypkXNqJETO87uPc8v4HZMIYBtAiCPbof_j6P-qvwD2yMsH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191319459</pqid></control><display><type>article</type><title>Novel Risk Engine for Diabetes Progression and Mortality in USA: Building, Relating, Assessing, and Validating Outcomes (BRAVO)</title><source>MEDLINE</source><source>Springer Online Journals</source><creator>Shao, Hui ; Fonseca, Vivian ; Stoecker, Charles ; Liu, Shuqian ; Shi, Lizheng</creator><creatorcontrib>Shao, Hui ; Fonseca, Vivian ; Stoecker, Charles ; Liu, Shuqian ; Shi, Lizheng</creatorcontrib><description>Background There is an urgent need to update diabetes prediction, which has relied on the United Kingdom Prospective Diabetes Study (UKPDS) that dates back to 1970 s’ European populations. Objective The objective of this study was to develop a risk engine with multiple risk equations using a recent patient cohort with type 2 diabetes mellitus reflective of the US population. Methods A total of 17 risk equations for predicting diabetes-related microvascular and macrovascular events, hypoglycemia, mortality, and progression of diabetes risk factors were estimated using the data from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial ( n  = 10,251). Internal and external validation processes were used to assess performance of the Building, Relating, Assessing, and Validating Outcomes (BRAVO) risk engine. One-way sensitivity analysis was conducted to examine the impact of risk factors on mortality at the population level. Results The BRAVO risk engine added several risk factors including severe hypoglycemia and common US racial/ethnicity categories compared with the UKPDS risk engine. The BRAVO risk engine also modeled mortality escalation associated with intensive glycemic control (i.e., glycosylated hemoglobin &lt; 6.5%). External validation showed a good prediction power on 28 endpoints observed from other clinical trials (slope = 1.071, R 2  = 0.86). Conclusion The BRAVO risk engine for the US diabetes cohort provides an alternative to the UKPDS risk engine. It can be applied to assist clinical and policy decision making such as cost-effective resource allocation in USA.</description><identifier>ISSN: 1170-7690</identifier><identifier>EISSN: 1179-2027</identifier><identifier>DOI: 10.1007/s40273-018-0662-1</identifier><identifier>PMID: 29725871</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Blood pressure ; Cardiovascular diseases ; Cardiovascular Diseases - epidemiology ; Clinical trials ; Comorbidity ; Complications and side effects ; Computer simulation ; Costs ; Decision making ; Decision Support Systems, Clinical - statistics &amp; numerical data ; Diabetes ; Diabetes Mellitus, Type 2 - epidemiology ; Diabetes Mellitus, Type 2 - mortality ; Disease Progression ; Ethnicity ; Female ; Health Administration ; Health Economics ; Health risk assessment ; Hemoglobin ; Humans ; Hypoglycemia ; Literature reviews ; Male ; Medicine ; Medicine &amp; Public Health ; Methods ; Models, Statistical ; Mortality ; Original Research Article ; Patient outcomes ; Pharmacoeconomics and Health Outcomes ; Population ; Prognosis ; Public Health ; Quality of life ; Quality of Life Research ; Risk Factors ; Studies ; Type 2 diabetes ; United States - epidemiology</subject><ispartof>PharmacoEconomics, 2018-09, Vol.36 (9), p.1125-1134</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Nature B.V. Sep 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-ea1e8478afe8d012cdac2d9a0650fba9c9752a157e290f9d2387f156270869cc3</citedby><cites>FETCH-LOGICAL-c537t-ea1e8478afe8d012cdac2d9a0650fba9c9752a157e290f9d2387f156270869cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40273-018-0662-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40273-018-0662-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29725871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Hui</creatorcontrib><creatorcontrib>Fonseca, Vivian</creatorcontrib><creatorcontrib>Stoecker, Charles</creatorcontrib><creatorcontrib>Liu, Shuqian</creatorcontrib><creatorcontrib>Shi, Lizheng</creatorcontrib><title>Novel Risk Engine for Diabetes Progression and Mortality in USA: Building, Relating, Assessing, and Validating Outcomes (BRAVO)</title><title>PharmacoEconomics</title><addtitle>PharmacoEconomics</addtitle><addtitle>Pharmacoeconomics</addtitle><description>Background There is an urgent need to update diabetes prediction, which has relied on the United Kingdom Prospective Diabetes Study (UKPDS) that dates back to 1970 s’ European populations. Objective The objective of this study was to develop a risk engine with multiple risk equations using a recent patient cohort with type 2 diabetes mellitus reflective of the US population. Methods A total of 17 risk equations for predicting diabetes-related microvascular and macrovascular events, hypoglycemia, mortality, and progression of diabetes risk factors were estimated using the data from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial ( n  = 10,251). Internal and external validation processes were used to assess performance of the Building, Relating, Assessing, and Validating Outcomes (BRAVO) risk engine. One-way sensitivity analysis was conducted to examine the impact of risk factors on mortality at the population level. Results The BRAVO risk engine added several risk factors including severe hypoglycemia and common US racial/ethnicity categories compared with the UKPDS risk engine. The BRAVO risk engine also modeled mortality escalation associated with intensive glycemic control (i.e., glycosylated hemoglobin &lt; 6.5%). External validation showed a good prediction power on 28 endpoints observed from other clinical trials (slope = 1.071, R 2  = 0.86). Conclusion The BRAVO risk engine for the US diabetes cohort provides an alternative to the UKPDS risk engine. It can be applied to assist clinical and policy decision making such as cost-effective resource allocation in USA.</description><subject>Blood pressure</subject><subject>Cardiovascular diseases</subject><subject>Cardiovascular Diseases - epidemiology</subject><subject>Clinical trials</subject><subject>Comorbidity</subject><subject>Complications and side effects</subject><subject>Computer simulation</subject><subject>Costs</subject><subject>Decision making</subject><subject>Decision Support Systems, Clinical - statistics &amp; numerical data</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 2 - epidemiology</subject><subject>Diabetes Mellitus, Type 2 - mortality</subject><subject>Disease Progression</subject><subject>Ethnicity</subject><subject>Female</subject><subject>Health Administration</subject><subject>Health Economics</subject><subject>Health risk assessment</subject><subject>Hemoglobin</subject><subject>Humans</subject><subject>Hypoglycemia</subject><subject>Literature reviews</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Mortality</subject><subject>Original Research Article</subject><subject>Patient outcomes</subject><subject>Pharmacoeconomics and Health Outcomes</subject><subject>Population</subject><subject>Prognosis</subject><subject>Public Health</subject><subject>Quality of life</subject><subject>Quality of Life Research</subject><subject>Risk Factors</subject><subject>Studies</subject><subject>Type 2 diabetes</subject><subject>United States - epidemiology</subject><issn>1170-7690</issn><issn>1179-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1Ustu1TAQjRCIPuAD2CBLbIpEisd5OGaBlD54SIWLLrRby9eZBLeJXeykUlf8Os69pbQI5IVHM-ec0bFPkjwDug-U8tchp4xnKYUqpWXJUniQbANwkbLYf7iuacpLQbeSnRDOKaVlxtnjZIsJzoqKw3by87O7wp4sTbggx7YzFknrPDkyaoUjBvLFu85jCMZZomxDPjk_qt6M18RYcvq1fkMOJtM3xnavyBJ7Na6rOoSZM5cz6SwymvWILKZRuyEK7x0s67PFyyfJo1b1AZ_e3LvJ6bvjb4cf0pPF-4-H9Umqi4yPKSrAKueVarFqKDDdKM0aoWhZ0HalhBa8YAoKjkzQVjQsq3gLRck4rUqhdbabvN3oXk6rARuNdvSql5feDMpfS6eMvD-x5rvs3JUUAEWVZ1Fg70bAux8ThlEOJmjse2XRTUEymhVs_g8RoS_-gp67ydtoTzIQkIHIizuoTvUojW1d3KtnUVlzyMvoEmhE7f8DFU-Dg9HOYmti_x4BNgTtXQge21uPQOWcGrlJjYypkXNqJETO87uPc8v4HZMIYBtAiCPbof_j6P-qvwD2yMsH</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Shao, Hui</creator><creator>Fonseca, Vivian</creator><creator>Stoecker, Charles</creator><creator>Liu, Shuqian</creator><creator>Shi, Lizheng</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>4T-</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88E</scope><scope>88G</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180901</creationdate><title>Novel Risk Engine for Diabetes Progression and Mortality in USA: Building, Relating, Assessing, and Validating Outcomes (BRAVO)</title><author>Shao, Hui ; Fonseca, Vivian ; Stoecker, Charles ; Liu, Shuqian ; Shi, Lizheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-ea1e8478afe8d012cdac2d9a0650fba9c9752a157e290f9d2387f156270869cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Blood pressure</topic><topic>Cardiovascular diseases</topic><topic>Cardiovascular Diseases - epidemiology</topic><topic>Clinical trials</topic><topic>Comorbidity</topic><topic>Complications and side effects</topic><topic>Computer simulation</topic><topic>Costs</topic><topic>Decision making</topic><topic>Decision Support Systems, Clinical - statistics &amp; numerical data</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 2 - epidemiology</topic><topic>Diabetes Mellitus, Type 2 - mortality</topic><topic>Disease Progression</topic><topic>Ethnicity</topic><topic>Female</topic><topic>Health Administration</topic><topic>Health Economics</topic><topic>Health risk assessment</topic><topic>Hemoglobin</topic><topic>Humans</topic><topic>Hypoglycemia</topic><topic>Literature reviews</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Mortality</topic><topic>Original Research Article</topic><topic>Patient outcomes</topic><topic>Pharmacoeconomics and Health Outcomes</topic><topic>Population</topic><topic>Prognosis</topic><topic>Public Health</topic><topic>Quality of life</topic><topic>Quality of Life Research</topic><topic>Risk Factors</topic><topic>Studies</topic><topic>Type 2 diabetes</topic><topic>United States - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Hui</creatorcontrib><creatorcontrib>Fonseca, Vivian</creatorcontrib><creatorcontrib>Stoecker, Charles</creatorcontrib><creatorcontrib>Liu, Shuqian</creatorcontrib><creatorcontrib>Shi, Lizheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Health Management</collection><collection>Medical Database</collection><collection>ProQuest Psychology Journals</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PharmacoEconomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Hui</au><au>Fonseca, Vivian</au><au>Stoecker, Charles</au><au>Liu, Shuqian</au><au>Shi, Lizheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Risk Engine for Diabetes Progression and Mortality in USA: Building, Relating, Assessing, and Validating Outcomes (BRAVO)</atitle><jtitle>PharmacoEconomics</jtitle><stitle>PharmacoEconomics</stitle><addtitle>Pharmacoeconomics</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>36</volume><issue>9</issue><spage>1125</spage><epage>1134</epage><pages>1125-1134</pages><issn>1170-7690</issn><eissn>1179-2027</eissn><abstract>Background There is an urgent need to update diabetes prediction, which has relied on the United Kingdom Prospective Diabetes Study (UKPDS) that dates back to 1970 s’ European populations. Objective The objective of this study was to develop a risk engine with multiple risk equations using a recent patient cohort with type 2 diabetes mellitus reflective of the US population. Methods A total of 17 risk equations for predicting diabetes-related microvascular and macrovascular events, hypoglycemia, mortality, and progression of diabetes risk factors were estimated using the data from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial ( n  = 10,251). Internal and external validation processes were used to assess performance of the Building, Relating, Assessing, and Validating Outcomes (BRAVO) risk engine. One-way sensitivity analysis was conducted to examine the impact of risk factors on mortality at the population level. Results The BRAVO risk engine added several risk factors including severe hypoglycemia and common US racial/ethnicity categories compared with the UKPDS risk engine. The BRAVO risk engine also modeled mortality escalation associated with intensive glycemic control (i.e., glycosylated hemoglobin &lt; 6.5%). External validation showed a good prediction power on 28 endpoints observed from other clinical trials (slope = 1.071, R 2  = 0.86). Conclusion The BRAVO risk engine for the US diabetes cohort provides an alternative to the UKPDS risk engine. It can be applied to assist clinical and policy decision making such as cost-effective resource allocation in USA.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>29725871</pmid><doi>10.1007/s40273-018-0662-1</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1170-7690
ispartof PharmacoEconomics, 2018-09, Vol.36 (9), p.1125-1134
issn 1170-7690
1179-2027
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9115843
source MEDLINE; Springer Online Journals
subjects Blood pressure
Cardiovascular diseases
Cardiovascular Diseases - epidemiology
Clinical trials
Comorbidity
Complications and side effects
Computer simulation
Costs
Decision making
Decision Support Systems, Clinical - statistics & numerical data
Diabetes
Diabetes Mellitus, Type 2 - epidemiology
Diabetes Mellitus, Type 2 - mortality
Disease Progression
Ethnicity
Female
Health Administration
Health Economics
Health risk assessment
Hemoglobin
Humans
Hypoglycemia
Literature reviews
Male
Medicine
Medicine & Public Health
Methods
Models, Statistical
Mortality
Original Research Article
Patient outcomes
Pharmacoeconomics and Health Outcomes
Population
Prognosis
Public Health
Quality of life
Quality of Life Research
Risk Factors
Studies
Type 2 diabetes
United States - epidemiology
title Novel Risk Engine for Diabetes Progression and Mortality in USA: Building, Relating, Assessing, and Validating Outcomes (BRAVO)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Risk%20Engine%20for%20Diabetes%20Progression%20and%20Mortality%20in%20USA:%20Building,%20Relating,%20Assessing,%20and%20Validating%20Outcomes%20(BRAVO)&rft.jtitle=PharmacoEconomics&rft.au=Shao,%20Hui&rft.date=2018-09-01&rft.volume=36&rft.issue=9&rft.spage=1125&rft.epage=1134&rft.pages=1125-1134&rft.issn=1170-7690&rft.eissn=1179-2027&rft_id=info:doi/10.1007/s40273-018-0662-1&rft_dat=%3Cgale_pubme%3EA714601210%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191319459&rft_id=info:pmid/29725871&rft_galeid=A714601210&rfr_iscdi=true