Clinical severity prediction in children with osteogenesis imperfecta caused by COL1A1/2 defects

Summary Osteogenesis imperfecta (OI) is a genetic disease with an estimated prevalence of 1 in 13,500 and 1 in 9700. The classification into subtypes of OI is important for prognosis and management. In this study, we established a clinical severity prediction model depending on multiple features of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Osteoporosis international 2022-06, Vol.33 (6), p.1373-1384
Hauptverfasser: Yang, Lin, Liu, Bo, Dong, Xinran, Wu, Jing, Sun, Chengjun, Xi, Li, Cheng, Ruoqian, Wu, Bingbing, Wang, Huijun, Tong, Shiyuan, Wang, Dahui, Luo, Feihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1384
container_issue 6
container_start_page 1373
container_title Osteoporosis international
container_volume 33
creator Yang, Lin
Liu, Bo
Dong, Xinran
Wu, Jing
Sun, Chengjun
Xi, Li
Cheng, Ruoqian
Wu, Bingbing
Wang, Huijun
Tong, Shiyuan
Wang, Dahui
Luo, Feihong
description Summary Osteogenesis imperfecta (OI) is a genetic disease with an estimated prevalence of 1 in 13,500 and 1 in 9700. The classification into subtypes of OI is important for prognosis and management. In this study, we established a clinical severity prediction model depending on multiple features of variants in COL1A1 / 2 genes. Introduction Ninety percent of OI cases are caused by pathogenic variants in the COL1A1 / COL1A2 gene. The Sillence classification describes four OI types with variable clinical features ranging from mild symptoms to lethal and progressively deforming symptoms. Methods We established a prediction model of the clinical severity of OI based on the random forest model with a training set obtained from the Human Gene Mutation Database, including 790 records of the COL1A1/COL1A2 genes. The features used in the prediction model were respectively based on variant-type features only, and the optimized features. Results With the training set, the prediction results showed that the area under the receiver operating characteristic curve (AUC) for predicting lethal to severe OI or mild/moderate OI was 0.767 and 0.902, respectively, when using variant-type features only and optimized features for COL1A1 defects, 0.545 and 0.731, respectively, for COL1A2 defects. For the 17 patients from our hospital, prediction accuracy for the patient with the COL1A1 and COL1A2 defects was 76.5% (95% CI: 50.1–93.2%) and 88.2% (95% CI: 63.6–98.5%), respectively. Conclusion We established an OI severity prediction model depending on multiple features of the specific variants in COL1A1 / 2 genes, with a prediction accuracy of 76–88%. This prediction algorithm is a promising alternative that could prove to be valuable in clinical practice.
doi_str_mv 10.1007/s00198-021-06263-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9106613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663803339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-1fd72880c85a78ade2975e00cf6b92593bb2c30a5b7a9289bf78bc2f379e97163</originalsourceid><addsrcrecordid>eNp9kUtvFDEQhC0EIkvgD3BAlrhwGdK2Z_y4IEUrXtJKuYDEzXg8PbuOZu3Fngnaf4_DhvA4cOpDfVXdrSLkOYPXDEBdFABmdAOcNSC5FA08ICvWCtFwI7uHZAVGqMa07MsZeVLKNVSTMeoxORMdtG1r-Ip8XU8hBu8mWvAGc5iP9JBxCH4OKdIQqd-FacgY6fcw72gqM6YtRiyh0LA_YB7Rz456txQcaH-k66sNu2QXnA54K5Wn5NHopoLP7uY5-fzu7af1h2Zz9f7j-nLT-Fa1c8PGQXGtwevOKe0G5EZ1COBH2RveGdH33AtwXa-c4dr0o9K956NQBo1iUpyTN6fcw9LvcfAY5-wme8hh7_LRJhfs30oMO7tNN9YwkJKJGvDqLiCnbwuW2e5D8ThNLmJaiuWSs3qI0W1FX_6DXqclx_pepaTQIIQwleInyudUSsbx_hgG9rZAeyrQ1gLtzwItVNOLP9-4t_xqrALiBJQqxS3m37v_E_sD3ASm7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663803339</pqid></control><display><type>article</type><title>Clinical severity prediction in children with osteogenesis imperfecta caused by COL1A1/2 defects</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Yang, Lin ; Liu, Bo ; Dong, Xinran ; Wu, Jing ; Sun, Chengjun ; Xi, Li ; Cheng, Ruoqian ; Wu, Bingbing ; Wang, Huijun ; Tong, Shiyuan ; Wang, Dahui ; Luo, Feihong</creator><creatorcontrib>Yang, Lin ; Liu, Bo ; Dong, Xinran ; Wu, Jing ; Sun, Chengjun ; Xi, Li ; Cheng, Ruoqian ; Wu, Bingbing ; Wang, Huijun ; Tong, Shiyuan ; Wang, Dahui ; Luo, Feihong</creatorcontrib><description>Summary Osteogenesis imperfecta (OI) is a genetic disease with an estimated prevalence of 1 in 13,500 and 1 in 9700. The classification into subtypes of OI is important for prognosis and management. In this study, we established a clinical severity prediction model depending on multiple features of variants in COL1A1 / 2 genes. Introduction Ninety percent of OI cases are caused by pathogenic variants in the COL1A1 / COL1A2 gene. The Sillence classification describes four OI types with variable clinical features ranging from mild symptoms to lethal and progressively deforming symptoms. Methods We established a prediction model of the clinical severity of OI based on the random forest model with a training set obtained from the Human Gene Mutation Database, including 790 records of the COL1A1/COL1A2 genes. The features used in the prediction model were respectively based on variant-type features only, and the optimized features. Results With the training set, the prediction results showed that the area under the receiver operating characteristic curve (AUC) for predicting lethal to severe OI or mild/moderate OI was 0.767 and 0.902, respectively, when using variant-type features only and optimized features for COL1A1 defects, 0.545 and 0.731, respectively, for COL1A2 defects. For the 17 patients from our hospital, prediction accuracy for the patient with the COL1A1 and COL1A2 defects was 76.5% (95% CI: 50.1–93.2%) and 88.2% (95% CI: 63.6–98.5%), respectively. Conclusion We established an OI severity prediction model depending on multiple features of the specific variants in COL1A1 / 2 genes, with a prediction accuracy of 76–88%. This prediction algorithm is a promising alternative that could prove to be valuable in clinical practice.</description><identifier>ISSN: 0937-941X</identifier><identifier>EISSN: 1433-2965</identifier><identifier>DOI: 10.1007/s00198-021-06263-0</identifier><identifier>PMID: 35044492</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Child ; Classification ; Collagen (type I) ; Collagen Type I - genetics ; Collagen Type I, alpha 1 Chain ; Endocrinology ; Genes ; Genetic disorders ; Humans ; Medicine ; Medicine &amp; Public Health ; Mutation ; Original ; Original Article ; Orthopedics ; Osteogenesis ; Osteogenesis imperfecta ; Osteogenesis Imperfecta - diagnosis ; Osteogenesis Imperfecta - genetics ; Patients ; Point mutation ; Prediction models ; Rheumatology</subject><ispartof>Osteoporosis international, 2022-06, Vol.33 (6), p.1373-1384</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-1fd72880c85a78ade2975e00cf6b92593bb2c30a5b7a9289bf78bc2f379e97163</citedby><cites>FETCH-LOGICAL-c474t-1fd72880c85a78ade2975e00cf6b92593bb2c30a5b7a9289bf78bc2f379e97163</cites><orcidid>0000-0002-6433-7994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00198-021-06263-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00198-021-06263-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35044492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Dong, Xinran</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Sun, Chengjun</creatorcontrib><creatorcontrib>Xi, Li</creatorcontrib><creatorcontrib>Cheng, Ruoqian</creatorcontrib><creatorcontrib>Wu, Bingbing</creatorcontrib><creatorcontrib>Wang, Huijun</creatorcontrib><creatorcontrib>Tong, Shiyuan</creatorcontrib><creatorcontrib>Wang, Dahui</creatorcontrib><creatorcontrib>Luo, Feihong</creatorcontrib><title>Clinical severity prediction in children with osteogenesis imperfecta caused by COL1A1/2 defects</title><title>Osteoporosis international</title><addtitle>Osteoporos Int</addtitle><addtitle>Osteoporos Int</addtitle><description>Summary Osteogenesis imperfecta (OI) is a genetic disease with an estimated prevalence of 1 in 13,500 and 1 in 9700. The classification into subtypes of OI is important for prognosis and management. In this study, we established a clinical severity prediction model depending on multiple features of variants in COL1A1 / 2 genes. Introduction Ninety percent of OI cases are caused by pathogenic variants in the COL1A1 / COL1A2 gene. The Sillence classification describes four OI types with variable clinical features ranging from mild symptoms to lethal and progressively deforming symptoms. Methods We established a prediction model of the clinical severity of OI based on the random forest model with a training set obtained from the Human Gene Mutation Database, including 790 records of the COL1A1/COL1A2 genes. The features used in the prediction model were respectively based on variant-type features only, and the optimized features. Results With the training set, the prediction results showed that the area under the receiver operating characteristic curve (AUC) for predicting lethal to severe OI or mild/moderate OI was 0.767 and 0.902, respectively, when using variant-type features only and optimized features for COL1A1 defects, 0.545 and 0.731, respectively, for COL1A2 defects. For the 17 patients from our hospital, prediction accuracy for the patient with the COL1A1 and COL1A2 defects was 76.5% (95% CI: 50.1–93.2%) and 88.2% (95% CI: 63.6–98.5%), respectively. Conclusion We established an OI severity prediction model depending on multiple features of the specific variants in COL1A1 / 2 genes, with a prediction accuracy of 76–88%. This prediction algorithm is a promising alternative that could prove to be valuable in clinical practice.</description><subject>Child</subject><subject>Classification</subject><subject>Collagen (type I)</subject><subject>Collagen Type I - genetics</subject><subject>Collagen Type I, alpha 1 Chain</subject><subject>Endocrinology</subject><subject>Genes</subject><subject>Genetic disorders</subject><subject>Humans</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mutation</subject><subject>Original</subject><subject>Original Article</subject><subject>Orthopedics</subject><subject>Osteogenesis</subject><subject>Osteogenesis imperfecta</subject><subject>Osteogenesis Imperfecta - diagnosis</subject><subject>Osteogenesis Imperfecta - genetics</subject><subject>Patients</subject><subject>Point mutation</subject><subject>Prediction models</subject><subject>Rheumatology</subject><issn>0937-941X</issn><issn>1433-2965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtvFDEQhC0EIkvgD3BAlrhwGdK2Z_y4IEUrXtJKuYDEzXg8PbuOZu3Fngnaf4_DhvA4cOpDfVXdrSLkOYPXDEBdFABmdAOcNSC5FA08ICvWCtFwI7uHZAVGqMa07MsZeVLKNVSTMeoxORMdtG1r-Ip8XU8hBu8mWvAGc5iP9JBxCH4OKdIQqd-FacgY6fcw72gqM6YtRiyh0LA_YB7Rz456txQcaH-k66sNu2QXnA54K5Wn5NHopoLP7uY5-fzu7af1h2Zz9f7j-nLT-Fa1c8PGQXGtwevOKe0G5EZ1COBH2RveGdH33AtwXa-c4dr0o9K956NQBo1iUpyTN6fcw9LvcfAY5-wme8hh7_LRJhfs30oMO7tNN9YwkJKJGvDqLiCnbwuW2e5D8ThNLmJaiuWSs3qI0W1FX_6DXqclx_pepaTQIIQwleInyudUSsbx_hgG9rZAeyrQ1gLtzwItVNOLP9-4t_xqrALiBJQqxS3m37v_E_sD3ASm7Q</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Yang, Lin</creator><creator>Liu, Bo</creator><creator>Dong, Xinran</creator><creator>Wu, Jing</creator><creator>Sun, Chengjun</creator><creator>Xi, Li</creator><creator>Cheng, Ruoqian</creator><creator>Wu, Bingbing</creator><creator>Wang, Huijun</creator><creator>Tong, Shiyuan</creator><creator>Wang, Dahui</creator><creator>Luo, Feihong</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6433-7994</orcidid></search><sort><creationdate>20220601</creationdate><title>Clinical severity prediction in children with osteogenesis imperfecta caused by COL1A1/2 defects</title><author>Yang, Lin ; Liu, Bo ; Dong, Xinran ; Wu, Jing ; Sun, Chengjun ; Xi, Li ; Cheng, Ruoqian ; Wu, Bingbing ; Wang, Huijun ; Tong, Shiyuan ; Wang, Dahui ; Luo, Feihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-1fd72880c85a78ade2975e00cf6b92593bb2c30a5b7a9289bf78bc2f379e97163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Child</topic><topic>Classification</topic><topic>Collagen (type I)</topic><topic>Collagen Type I - genetics</topic><topic>Collagen Type I, alpha 1 Chain</topic><topic>Endocrinology</topic><topic>Genes</topic><topic>Genetic disorders</topic><topic>Humans</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mutation</topic><topic>Original</topic><topic>Original Article</topic><topic>Orthopedics</topic><topic>Osteogenesis</topic><topic>Osteogenesis imperfecta</topic><topic>Osteogenesis Imperfecta - diagnosis</topic><topic>Osteogenesis Imperfecta - genetics</topic><topic>Patients</topic><topic>Point mutation</topic><topic>Prediction models</topic><topic>Rheumatology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Dong, Xinran</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Sun, Chengjun</creatorcontrib><creatorcontrib>Xi, Li</creatorcontrib><creatorcontrib>Cheng, Ruoqian</creatorcontrib><creatorcontrib>Wu, Bingbing</creatorcontrib><creatorcontrib>Wang, Huijun</creatorcontrib><creatorcontrib>Tong, Shiyuan</creatorcontrib><creatorcontrib>Wang, Dahui</creatorcontrib><creatorcontrib>Luo, Feihong</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Osteoporosis international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Lin</au><au>Liu, Bo</au><au>Dong, Xinran</au><au>Wu, Jing</au><au>Sun, Chengjun</au><au>Xi, Li</au><au>Cheng, Ruoqian</au><au>Wu, Bingbing</au><au>Wang, Huijun</au><au>Tong, Shiyuan</au><au>Wang, Dahui</au><au>Luo, Feihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical severity prediction in children with osteogenesis imperfecta caused by COL1A1/2 defects</atitle><jtitle>Osteoporosis international</jtitle><stitle>Osteoporos Int</stitle><addtitle>Osteoporos Int</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>33</volume><issue>6</issue><spage>1373</spage><epage>1384</epage><pages>1373-1384</pages><issn>0937-941X</issn><eissn>1433-2965</eissn><abstract>Summary Osteogenesis imperfecta (OI) is a genetic disease with an estimated prevalence of 1 in 13,500 and 1 in 9700. The classification into subtypes of OI is important for prognosis and management. In this study, we established a clinical severity prediction model depending on multiple features of variants in COL1A1 / 2 genes. Introduction Ninety percent of OI cases are caused by pathogenic variants in the COL1A1 / COL1A2 gene. The Sillence classification describes four OI types with variable clinical features ranging from mild symptoms to lethal and progressively deforming symptoms. Methods We established a prediction model of the clinical severity of OI based on the random forest model with a training set obtained from the Human Gene Mutation Database, including 790 records of the COL1A1/COL1A2 genes. The features used in the prediction model were respectively based on variant-type features only, and the optimized features. Results With the training set, the prediction results showed that the area under the receiver operating characteristic curve (AUC) for predicting lethal to severe OI or mild/moderate OI was 0.767 and 0.902, respectively, when using variant-type features only and optimized features for COL1A1 defects, 0.545 and 0.731, respectively, for COL1A2 defects. For the 17 patients from our hospital, prediction accuracy for the patient with the COL1A1 and COL1A2 defects was 76.5% (95% CI: 50.1–93.2%) and 88.2% (95% CI: 63.6–98.5%), respectively. Conclusion We established an OI severity prediction model depending on multiple features of the specific variants in COL1A1 / 2 genes, with a prediction accuracy of 76–88%. This prediction algorithm is a promising alternative that could prove to be valuable in clinical practice.</abstract><cop>London</cop><pub>Springer London</pub><pmid>35044492</pmid><doi>10.1007/s00198-021-06263-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6433-7994</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0937-941X
ispartof Osteoporosis international, 2022-06, Vol.33 (6), p.1373-1384
issn 0937-941X
1433-2965
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9106613
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Child
Classification
Collagen (type I)
Collagen Type I - genetics
Collagen Type I, alpha 1 Chain
Endocrinology
Genes
Genetic disorders
Humans
Medicine
Medicine & Public Health
Mutation
Original
Original Article
Orthopedics
Osteogenesis
Osteogenesis imperfecta
Osteogenesis Imperfecta - diagnosis
Osteogenesis Imperfecta - genetics
Patients
Point mutation
Prediction models
Rheumatology
title Clinical severity prediction in children with osteogenesis imperfecta caused by COL1A1/2 defects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T03%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical%20severity%20prediction%20in%20children%20with%20osteogenesis%20imperfecta%20caused%20by%20COL1A1/2%20defects&rft.jtitle=Osteoporosis%20international&rft.au=Yang,%20Lin&rft.date=2022-06-01&rft.volume=33&rft.issue=6&rft.spage=1373&rft.epage=1384&rft.pages=1373-1384&rft.issn=0937-941X&rft.eissn=1433-2965&rft_id=info:doi/10.1007/s00198-021-06263-0&rft_dat=%3Cproquest_pubme%3E2663803339%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663803339&rft_id=info:pmid/35044492&rfr_iscdi=true