Clinical severity prediction in children with osteogenesis imperfecta caused by COL1A1/2 defects
Summary Osteogenesis imperfecta (OI) is a genetic disease with an estimated prevalence of 1 in 13,500 and 1 in 9700. The classification into subtypes of OI is important for prognosis and management. In this study, we established a clinical severity prediction model depending on multiple features of...
Gespeichert in:
Veröffentlicht in: | Osteoporosis international 2022-06, Vol.33 (6), p.1373-1384 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1384 |
---|---|
container_issue | 6 |
container_start_page | 1373 |
container_title | Osteoporosis international |
container_volume | 33 |
creator | Yang, Lin Liu, Bo Dong, Xinran Wu, Jing Sun, Chengjun Xi, Li Cheng, Ruoqian Wu, Bingbing Wang, Huijun Tong, Shiyuan Wang, Dahui Luo, Feihong |
description | Summary
Osteogenesis imperfecta (OI) is a genetic disease with an estimated prevalence of 1 in 13,500 and 1 in 9700. The classification into subtypes of OI is important for prognosis and management. In this study, we established a clinical severity prediction model depending on multiple features of variants in
COL1A1
/
2
genes.
Introduction
Ninety percent of OI cases are caused by pathogenic variants in the
COL1A1
/
COL1A2
gene. The Sillence classification describes four OI types with variable clinical features ranging from mild symptoms to lethal and progressively deforming symptoms.
Methods
We established a prediction model of the clinical severity of OI based on the random forest model with a training set obtained from the Human Gene Mutation Database, including 790 records of the
COL1A1/COL1A2
genes. The features used in the prediction model were respectively based on variant-type features only, and the optimized features.
Results
With the training set, the prediction results showed that the area under the receiver operating characteristic curve (AUC) for predicting lethal to severe OI or mild/moderate OI was 0.767 and 0.902, respectively, when using variant-type features only and optimized features for
COL1A1
defects, 0.545 and 0.731, respectively, for
COL1A2
defects. For the 17 patients from our hospital, prediction accuracy for the patient with the
COL1A1
and
COL1A2
defects was 76.5% (95% CI: 50.1–93.2%) and 88.2% (95% CI: 63.6–98.5%), respectively.
Conclusion
We established an OI severity prediction model depending on multiple features of the specific variants in
COL1A1
/
2
genes, with a prediction accuracy of 76–88%. This prediction algorithm is a promising alternative that could prove to be valuable in clinical practice. |
doi_str_mv | 10.1007/s00198-021-06263-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9106613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663803339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-1fd72880c85a78ade2975e00cf6b92593bb2c30a5b7a9289bf78bc2f379e97163</originalsourceid><addsrcrecordid>eNp9kUtvFDEQhC0EIkvgD3BAlrhwGdK2Z_y4IEUrXtJKuYDEzXg8PbuOZu3Fngnaf4_DhvA4cOpDfVXdrSLkOYPXDEBdFABmdAOcNSC5FA08ICvWCtFwI7uHZAVGqMa07MsZeVLKNVSTMeoxORMdtG1r-Ip8XU8hBu8mWvAGc5iP9JBxCH4OKdIQqd-FacgY6fcw72gqM6YtRiyh0LA_YB7Rz456txQcaH-k66sNu2QXnA54K5Wn5NHopoLP7uY5-fzu7af1h2Zz9f7j-nLT-Fa1c8PGQXGtwevOKe0G5EZ1COBH2RveGdH33AtwXa-c4dr0o9K956NQBo1iUpyTN6fcw9LvcfAY5-wme8hh7_LRJhfs30oMO7tNN9YwkJKJGvDqLiCnbwuW2e5D8ThNLmJaiuWSs3qI0W1FX_6DXqclx_pepaTQIIQwleInyudUSsbx_hgG9rZAeyrQ1gLtzwItVNOLP9-4t_xqrALiBJQqxS3m37v_E_sD3ASm7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663803339</pqid></control><display><type>article</type><title>Clinical severity prediction in children with osteogenesis imperfecta caused by COL1A1/2 defects</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Yang, Lin ; Liu, Bo ; Dong, Xinran ; Wu, Jing ; Sun, Chengjun ; Xi, Li ; Cheng, Ruoqian ; Wu, Bingbing ; Wang, Huijun ; Tong, Shiyuan ; Wang, Dahui ; Luo, Feihong</creator><creatorcontrib>Yang, Lin ; Liu, Bo ; Dong, Xinran ; Wu, Jing ; Sun, Chengjun ; Xi, Li ; Cheng, Ruoqian ; Wu, Bingbing ; Wang, Huijun ; Tong, Shiyuan ; Wang, Dahui ; Luo, Feihong</creatorcontrib><description>Summary
Osteogenesis imperfecta (OI) is a genetic disease with an estimated prevalence of 1 in 13,500 and 1 in 9700. The classification into subtypes of OI is important for prognosis and management. In this study, we established a clinical severity prediction model depending on multiple features of variants in
COL1A1
/
2
genes.
Introduction
Ninety percent of OI cases are caused by pathogenic variants in the
COL1A1
/
COL1A2
gene. The Sillence classification describes four OI types with variable clinical features ranging from mild symptoms to lethal and progressively deforming symptoms.
Methods
We established a prediction model of the clinical severity of OI based on the random forest model with a training set obtained from the Human Gene Mutation Database, including 790 records of the
COL1A1/COL1A2
genes. The features used in the prediction model were respectively based on variant-type features only, and the optimized features.
Results
With the training set, the prediction results showed that the area under the receiver operating characteristic curve (AUC) for predicting lethal to severe OI or mild/moderate OI was 0.767 and 0.902, respectively, when using variant-type features only and optimized features for
COL1A1
defects, 0.545 and 0.731, respectively, for
COL1A2
defects. For the 17 patients from our hospital, prediction accuracy for the patient with the
COL1A1
and
COL1A2
defects was 76.5% (95% CI: 50.1–93.2%) and 88.2% (95% CI: 63.6–98.5%), respectively.
Conclusion
We established an OI severity prediction model depending on multiple features of the specific variants in
COL1A1
/
2
genes, with a prediction accuracy of 76–88%. This prediction algorithm is a promising alternative that could prove to be valuable in clinical practice.</description><identifier>ISSN: 0937-941X</identifier><identifier>EISSN: 1433-2965</identifier><identifier>DOI: 10.1007/s00198-021-06263-0</identifier><identifier>PMID: 35044492</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Child ; Classification ; Collagen (type I) ; Collagen Type I - genetics ; Collagen Type I, alpha 1 Chain ; Endocrinology ; Genes ; Genetic disorders ; Humans ; Medicine ; Medicine & Public Health ; Mutation ; Original ; Original Article ; Orthopedics ; Osteogenesis ; Osteogenesis imperfecta ; Osteogenesis Imperfecta - diagnosis ; Osteogenesis Imperfecta - genetics ; Patients ; Point mutation ; Prediction models ; Rheumatology</subject><ispartof>Osteoporosis international, 2022-06, Vol.33 (6), p.1373-1384</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-1fd72880c85a78ade2975e00cf6b92593bb2c30a5b7a9289bf78bc2f379e97163</citedby><cites>FETCH-LOGICAL-c474t-1fd72880c85a78ade2975e00cf6b92593bb2c30a5b7a9289bf78bc2f379e97163</cites><orcidid>0000-0002-6433-7994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00198-021-06263-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00198-021-06263-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35044492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Dong, Xinran</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Sun, Chengjun</creatorcontrib><creatorcontrib>Xi, Li</creatorcontrib><creatorcontrib>Cheng, Ruoqian</creatorcontrib><creatorcontrib>Wu, Bingbing</creatorcontrib><creatorcontrib>Wang, Huijun</creatorcontrib><creatorcontrib>Tong, Shiyuan</creatorcontrib><creatorcontrib>Wang, Dahui</creatorcontrib><creatorcontrib>Luo, Feihong</creatorcontrib><title>Clinical severity prediction in children with osteogenesis imperfecta caused by COL1A1/2 defects</title><title>Osteoporosis international</title><addtitle>Osteoporos Int</addtitle><addtitle>Osteoporos Int</addtitle><description>Summary
Osteogenesis imperfecta (OI) is a genetic disease with an estimated prevalence of 1 in 13,500 and 1 in 9700. The classification into subtypes of OI is important for prognosis and management. In this study, we established a clinical severity prediction model depending on multiple features of variants in
COL1A1
/
2
genes.
Introduction
Ninety percent of OI cases are caused by pathogenic variants in the
COL1A1
/
COL1A2
gene. The Sillence classification describes four OI types with variable clinical features ranging from mild symptoms to lethal and progressively deforming symptoms.
Methods
We established a prediction model of the clinical severity of OI based on the random forest model with a training set obtained from the Human Gene Mutation Database, including 790 records of the
COL1A1/COL1A2
genes. The features used in the prediction model were respectively based on variant-type features only, and the optimized features.
Results
With the training set, the prediction results showed that the area under the receiver operating characteristic curve (AUC) for predicting lethal to severe OI or mild/moderate OI was 0.767 and 0.902, respectively, when using variant-type features only and optimized features for
COL1A1
defects, 0.545 and 0.731, respectively, for
COL1A2
defects. For the 17 patients from our hospital, prediction accuracy for the patient with the
COL1A1
and
COL1A2
defects was 76.5% (95% CI: 50.1–93.2%) and 88.2% (95% CI: 63.6–98.5%), respectively.
Conclusion
We established an OI severity prediction model depending on multiple features of the specific variants in
COL1A1
/
2
genes, with a prediction accuracy of 76–88%. This prediction algorithm is a promising alternative that could prove to be valuable in clinical practice.</description><subject>Child</subject><subject>Classification</subject><subject>Collagen (type I)</subject><subject>Collagen Type I - genetics</subject><subject>Collagen Type I, alpha 1 Chain</subject><subject>Endocrinology</subject><subject>Genes</subject><subject>Genetic disorders</subject><subject>Humans</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mutation</subject><subject>Original</subject><subject>Original Article</subject><subject>Orthopedics</subject><subject>Osteogenesis</subject><subject>Osteogenesis imperfecta</subject><subject>Osteogenesis Imperfecta - diagnosis</subject><subject>Osteogenesis Imperfecta - genetics</subject><subject>Patients</subject><subject>Point mutation</subject><subject>Prediction models</subject><subject>Rheumatology</subject><issn>0937-941X</issn><issn>1433-2965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtvFDEQhC0EIkvgD3BAlrhwGdK2Z_y4IEUrXtJKuYDEzXg8PbuOZu3Fngnaf4_DhvA4cOpDfVXdrSLkOYPXDEBdFABmdAOcNSC5FA08ICvWCtFwI7uHZAVGqMa07MsZeVLKNVSTMeoxORMdtG1r-Ip8XU8hBu8mWvAGc5iP9JBxCH4OKdIQqd-FacgY6fcw72gqM6YtRiyh0LA_YB7Rz456txQcaH-k66sNu2QXnA54K5Wn5NHopoLP7uY5-fzu7af1h2Zz9f7j-nLT-Fa1c8PGQXGtwevOKe0G5EZ1COBH2RveGdH33AtwXa-c4dr0o9K956NQBo1iUpyTN6fcw9LvcfAY5-wme8hh7_LRJhfs30oMO7tNN9YwkJKJGvDqLiCnbwuW2e5D8ThNLmJaiuWSs3qI0W1FX_6DXqclx_pepaTQIIQwleInyudUSsbx_hgG9rZAeyrQ1gLtzwItVNOLP9-4t_xqrALiBJQqxS3m37v_E_sD3ASm7Q</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Yang, Lin</creator><creator>Liu, Bo</creator><creator>Dong, Xinran</creator><creator>Wu, Jing</creator><creator>Sun, Chengjun</creator><creator>Xi, Li</creator><creator>Cheng, Ruoqian</creator><creator>Wu, Bingbing</creator><creator>Wang, Huijun</creator><creator>Tong, Shiyuan</creator><creator>Wang, Dahui</creator><creator>Luo, Feihong</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6433-7994</orcidid></search><sort><creationdate>20220601</creationdate><title>Clinical severity prediction in children with osteogenesis imperfecta caused by COL1A1/2 defects</title><author>Yang, Lin ; Liu, Bo ; Dong, Xinran ; Wu, Jing ; Sun, Chengjun ; Xi, Li ; Cheng, Ruoqian ; Wu, Bingbing ; Wang, Huijun ; Tong, Shiyuan ; Wang, Dahui ; Luo, Feihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-1fd72880c85a78ade2975e00cf6b92593bb2c30a5b7a9289bf78bc2f379e97163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Child</topic><topic>Classification</topic><topic>Collagen (type I)</topic><topic>Collagen Type I - genetics</topic><topic>Collagen Type I, alpha 1 Chain</topic><topic>Endocrinology</topic><topic>Genes</topic><topic>Genetic disorders</topic><topic>Humans</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mutation</topic><topic>Original</topic><topic>Original Article</topic><topic>Orthopedics</topic><topic>Osteogenesis</topic><topic>Osteogenesis imperfecta</topic><topic>Osteogenesis Imperfecta - diagnosis</topic><topic>Osteogenesis Imperfecta - genetics</topic><topic>Patients</topic><topic>Point mutation</topic><topic>Prediction models</topic><topic>Rheumatology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Dong, Xinran</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Sun, Chengjun</creatorcontrib><creatorcontrib>Xi, Li</creatorcontrib><creatorcontrib>Cheng, Ruoqian</creatorcontrib><creatorcontrib>Wu, Bingbing</creatorcontrib><creatorcontrib>Wang, Huijun</creatorcontrib><creatorcontrib>Tong, Shiyuan</creatorcontrib><creatorcontrib>Wang, Dahui</creatorcontrib><creatorcontrib>Luo, Feihong</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Osteoporosis international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Lin</au><au>Liu, Bo</au><au>Dong, Xinran</au><au>Wu, Jing</au><au>Sun, Chengjun</au><au>Xi, Li</au><au>Cheng, Ruoqian</au><au>Wu, Bingbing</au><au>Wang, Huijun</au><au>Tong, Shiyuan</au><au>Wang, Dahui</au><au>Luo, Feihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical severity prediction in children with osteogenesis imperfecta caused by COL1A1/2 defects</atitle><jtitle>Osteoporosis international</jtitle><stitle>Osteoporos Int</stitle><addtitle>Osteoporos Int</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>33</volume><issue>6</issue><spage>1373</spage><epage>1384</epage><pages>1373-1384</pages><issn>0937-941X</issn><eissn>1433-2965</eissn><abstract>Summary
Osteogenesis imperfecta (OI) is a genetic disease with an estimated prevalence of 1 in 13,500 and 1 in 9700. The classification into subtypes of OI is important for prognosis and management. In this study, we established a clinical severity prediction model depending on multiple features of variants in
COL1A1
/
2
genes.
Introduction
Ninety percent of OI cases are caused by pathogenic variants in the
COL1A1
/
COL1A2
gene. The Sillence classification describes four OI types with variable clinical features ranging from mild symptoms to lethal and progressively deforming symptoms.
Methods
We established a prediction model of the clinical severity of OI based on the random forest model with a training set obtained from the Human Gene Mutation Database, including 790 records of the
COL1A1/COL1A2
genes. The features used in the prediction model were respectively based on variant-type features only, and the optimized features.
Results
With the training set, the prediction results showed that the area under the receiver operating characteristic curve (AUC) for predicting lethal to severe OI or mild/moderate OI was 0.767 and 0.902, respectively, when using variant-type features only and optimized features for
COL1A1
defects, 0.545 and 0.731, respectively, for
COL1A2
defects. For the 17 patients from our hospital, prediction accuracy for the patient with the
COL1A1
and
COL1A2
defects was 76.5% (95% CI: 50.1–93.2%) and 88.2% (95% CI: 63.6–98.5%), respectively.
Conclusion
We established an OI severity prediction model depending on multiple features of the specific variants in
COL1A1
/
2
genes, with a prediction accuracy of 76–88%. This prediction algorithm is a promising alternative that could prove to be valuable in clinical practice.</abstract><cop>London</cop><pub>Springer London</pub><pmid>35044492</pmid><doi>10.1007/s00198-021-06263-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6433-7994</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0937-941X |
ispartof | Osteoporosis international, 2022-06, Vol.33 (6), p.1373-1384 |
issn | 0937-941X 1433-2965 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9106613 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Child Classification Collagen (type I) Collagen Type I - genetics Collagen Type I, alpha 1 Chain Endocrinology Genes Genetic disorders Humans Medicine Medicine & Public Health Mutation Original Original Article Orthopedics Osteogenesis Osteogenesis imperfecta Osteogenesis Imperfecta - diagnosis Osteogenesis Imperfecta - genetics Patients Point mutation Prediction models Rheumatology |
title | Clinical severity prediction in children with osteogenesis imperfecta caused by COL1A1/2 defects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T03%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical%20severity%20prediction%20in%20children%20with%20osteogenesis%20imperfecta%20caused%20by%20COL1A1/2%20defects&rft.jtitle=Osteoporosis%20international&rft.au=Yang,%20Lin&rft.date=2022-06-01&rft.volume=33&rft.issue=6&rft.spage=1373&rft.epage=1384&rft.pages=1373-1384&rft.issn=0937-941X&rft.eissn=1433-2965&rft_id=info:doi/10.1007/s00198-021-06263-0&rft_dat=%3Cproquest_pubme%3E2663803339%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663803339&rft_id=info:pmid/35044492&rfr_iscdi=true |