A Digital Twin-Driven Life Prediction Method of Lithium-Ion Batteries Based on Adaptive Model Evolution

Accurate life prediction and reliability evaluation of lithium-ion batteries are of great significance for predictive maintenance. In the whole life cycle of a battery, the accurate description of the dynamic and stochastic characteristics of life has always been a key problem. In this paper, the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-05, Vol.15 (9), p.3331
Hauptverfasser: Yang, Dezhen, Cui, Yidan, Xia, Quan, Jiang, Fusheng, Ren, Yi, Sun, Bo, Feng, Qiang, Wang, Zili, Yang, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 3331
container_title Materials
container_volume 15
creator Yang, Dezhen
Cui, Yidan
Xia, Quan
Jiang, Fusheng
Ren, Yi
Sun, Bo
Feng, Qiang
Wang, Zili
Yang, Chao
description Accurate life prediction and reliability evaluation of lithium-ion batteries are of great significance for predictive maintenance. In the whole life cycle of a battery, the accurate description of the dynamic and stochastic characteristics of life has always been a key problem. In this paper, the concept of the digital twin is introduced, and a digital twin for reliability based on remaining useful cycle life prediction is proposed for lithium-ion batteries. The capacity degradation model, stochastic degradation model, life prediction, and reliability evaluation model are established to describe the randomness of battery degradation and the dispersion of the life of multiple cells. Based on the Bayesian algorithm, an adaptive evolution method for the model of the digital twin is proposed to improve prediction accuracy, followed by experimental verification. Finally, the life prediction, reliability evaluation, and predictive maintenance of the battery based on the digital twin are implemented. The results show the digital twin for reliability has good accuracy in the whole life cycle. The error can be controlled at about 5% with the adaptive evolution algorithm. For battery L1 and L6 in this case, predictive maintenance costs are expected to decrease by 62.0% and 52.5%, respectively.
doi_str_mv 10.3390/ma15093331
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9103731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663066536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-1ae801d530f387efe6453dcc3850eafbfa50c57d0a3e9879e4b78182013d7cab3</originalsourceid><addsrcrecordid>eNpdkU1LJDEQhsOiqLhe_AFLYC-y0LvJVKe7cxFm_ViFET3oOWSS6plId2dM0iP-ezP4sWpdqsj78FKVl5BDzn4DSPan11wwCQD8G9njUlYFl2W59WHeJQcx3rNcGWomcofsghCSV5XYI4spPXULl3RHbx_dUJwGt8aBzlyL9CagdSY5P9ArTEtvqW-zkpZu7IvL_PpXp4TBYcxTxCwPdGr1KmULeuUtdvRs7btx4_CdbLe6i3jw2vfJ3fnZ7clFMbv-d3kynRWmZFUquMaGcSuAtdDU2GJVCrDGQCMY6nbeasGMqC3TgLKpJZbzuslHMQ62NnoO--T4xXc1znu0BocUdKdWwfU6PCmvnfqsDG6pFn6tJGdQA88GR68GwT-MGJPqXTTYdXpAP0Y1qaq6lsAnIqM_v6D3fgxDPm9DAcsfDFWmfr1QJvgYA7bvy3CmNhGq_xFm-MfH9d_Rt8DgGXOvloI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663066536</pqid></control><display><type>article</type><title>A Digital Twin-Driven Life Prediction Method of Lithium-Ion Batteries Based on Adaptive Model Evolution</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Dezhen ; Cui, Yidan ; Xia, Quan ; Jiang, Fusheng ; Ren, Yi ; Sun, Bo ; Feng, Qiang ; Wang, Zili ; Yang, Chao</creator><creatorcontrib>Yang, Dezhen ; Cui, Yidan ; Xia, Quan ; Jiang, Fusheng ; Ren, Yi ; Sun, Bo ; Feng, Qiang ; Wang, Zili ; Yang, Chao</creatorcontrib><description>Accurate life prediction and reliability evaluation of lithium-ion batteries are of great significance for predictive maintenance. In the whole life cycle of a battery, the accurate description of the dynamic and stochastic characteristics of life has always been a key problem. In this paper, the concept of the digital twin is introduced, and a digital twin for reliability based on remaining useful cycle life prediction is proposed for lithium-ion batteries. The capacity degradation model, stochastic degradation model, life prediction, and reliability evaluation model are established to describe the randomness of battery degradation and the dispersion of the life of multiple cells. Based on the Bayesian algorithm, an adaptive evolution method for the model of the digital twin is proposed to improve prediction accuracy, followed by experimental verification. Finally, the life prediction, reliability evaluation, and predictive maintenance of the battery based on the digital twin are implemented. The results show the digital twin for reliability has good accuracy in the whole life cycle. The error can be controlled at about 5% with the adaptive evolution algorithm. For battery L1 and L6 in this case, predictive maintenance costs are expected to decrease by 62.0% and 52.5%, respectively.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15093331</identifier><identifier>PMID: 35591665</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Adaptive algorithms ; Aircraft ; Battery cycles ; Degradation ; Digital twins ; Evolution &amp; development ; Evolutionary algorithms ; Fault diagnosis ; Life prediction ; Lithium ; Lithium-ion batteries ; Maintenance costs ; Neural networks ; Parameter estimation ; Predictive maintenance ; Randomness ; Rechargeable batteries ; Reliability analysis ; Simulation ; Visualization</subject><ispartof>Materials, 2022-05, Vol.15 (9), p.3331</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-1ae801d530f387efe6453dcc3850eafbfa50c57d0a3e9879e4b78182013d7cab3</citedby><cites>FETCH-LOGICAL-c406t-1ae801d530f387efe6453dcc3850eafbfa50c57d0a3e9879e4b78182013d7cab3</cites><orcidid>0000-0002-6081-9507 ; 0000-0003-2454-7839 ; 0000-0002-3665-700X ; 0000-0003-3526-296X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103731/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103731/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35591665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Dezhen</creatorcontrib><creatorcontrib>Cui, Yidan</creatorcontrib><creatorcontrib>Xia, Quan</creatorcontrib><creatorcontrib>Jiang, Fusheng</creatorcontrib><creatorcontrib>Ren, Yi</creatorcontrib><creatorcontrib>Sun, Bo</creatorcontrib><creatorcontrib>Feng, Qiang</creatorcontrib><creatorcontrib>Wang, Zili</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><title>A Digital Twin-Driven Life Prediction Method of Lithium-Ion Batteries Based on Adaptive Model Evolution</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Accurate life prediction and reliability evaluation of lithium-ion batteries are of great significance for predictive maintenance. In the whole life cycle of a battery, the accurate description of the dynamic and stochastic characteristics of life has always been a key problem. In this paper, the concept of the digital twin is introduced, and a digital twin for reliability based on remaining useful cycle life prediction is proposed for lithium-ion batteries. The capacity degradation model, stochastic degradation model, life prediction, and reliability evaluation model are established to describe the randomness of battery degradation and the dispersion of the life of multiple cells. Based on the Bayesian algorithm, an adaptive evolution method for the model of the digital twin is proposed to improve prediction accuracy, followed by experimental verification. Finally, the life prediction, reliability evaluation, and predictive maintenance of the battery based on the digital twin are implemented. The results show the digital twin for reliability has good accuracy in the whole life cycle. The error can be controlled at about 5% with the adaptive evolution algorithm. For battery L1 and L6 in this case, predictive maintenance costs are expected to decrease by 62.0% and 52.5%, respectively.</description><subject>Accuracy</subject><subject>Adaptive algorithms</subject><subject>Aircraft</subject><subject>Battery cycles</subject><subject>Degradation</subject><subject>Digital twins</subject><subject>Evolution &amp; development</subject><subject>Evolutionary algorithms</subject><subject>Fault diagnosis</subject><subject>Life prediction</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Maintenance costs</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Predictive maintenance</subject><subject>Randomness</subject><subject>Rechargeable batteries</subject><subject>Reliability analysis</subject><subject>Simulation</subject><subject>Visualization</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1LJDEQhsOiqLhe_AFLYC-y0LvJVKe7cxFm_ViFET3oOWSS6plId2dM0iP-ezP4sWpdqsj78FKVl5BDzn4DSPan11wwCQD8G9njUlYFl2W59WHeJQcx3rNcGWomcofsghCSV5XYI4spPXULl3RHbx_dUJwGt8aBzlyL9CagdSY5P9ArTEtvqW-zkpZu7IvL_PpXp4TBYcxTxCwPdGr1KmULeuUtdvRs7btx4_CdbLe6i3jw2vfJ3fnZ7clFMbv-d3kynRWmZFUquMaGcSuAtdDU2GJVCrDGQCMY6nbeasGMqC3TgLKpJZbzuslHMQ62NnoO--T4xXc1znu0BocUdKdWwfU6PCmvnfqsDG6pFn6tJGdQA88GR68GwT-MGJPqXTTYdXpAP0Y1qaq6lsAnIqM_v6D3fgxDPm9DAcsfDFWmfr1QJvgYA7bvy3CmNhGq_xFm-MfH9d_Rt8DgGXOvloI</recordid><startdate>20220506</startdate><enddate>20220506</enddate><creator>Yang, Dezhen</creator><creator>Cui, Yidan</creator><creator>Xia, Quan</creator><creator>Jiang, Fusheng</creator><creator>Ren, Yi</creator><creator>Sun, Bo</creator><creator>Feng, Qiang</creator><creator>Wang, Zili</creator><creator>Yang, Chao</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6081-9507</orcidid><orcidid>https://orcid.org/0000-0003-2454-7839</orcidid><orcidid>https://orcid.org/0000-0002-3665-700X</orcidid><orcidid>https://orcid.org/0000-0003-3526-296X</orcidid></search><sort><creationdate>20220506</creationdate><title>A Digital Twin-Driven Life Prediction Method of Lithium-Ion Batteries Based on Adaptive Model Evolution</title><author>Yang, Dezhen ; Cui, Yidan ; Xia, Quan ; Jiang, Fusheng ; Ren, Yi ; Sun, Bo ; Feng, Qiang ; Wang, Zili ; Yang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-1ae801d530f387efe6453dcc3850eafbfa50c57d0a3e9879e4b78182013d7cab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Adaptive algorithms</topic><topic>Aircraft</topic><topic>Battery cycles</topic><topic>Degradation</topic><topic>Digital twins</topic><topic>Evolution &amp; development</topic><topic>Evolutionary algorithms</topic><topic>Fault diagnosis</topic><topic>Life prediction</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Maintenance costs</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Predictive maintenance</topic><topic>Randomness</topic><topic>Rechargeable batteries</topic><topic>Reliability analysis</topic><topic>Simulation</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Dezhen</creatorcontrib><creatorcontrib>Cui, Yidan</creatorcontrib><creatorcontrib>Xia, Quan</creatorcontrib><creatorcontrib>Jiang, Fusheng</creatorcontrib><creatorcontrib>Ren, Yi</creatorcontrib><creatorcontrib>Sun, Bo</creatorcontrib><creatorcontrib>Feng, Qiang</creatorcontrib><creatorcontrib>Wang, Zili</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Dezhen</au><au>Cui, Yidan</au><au>Xia, Quan</au><au>Jiang, Fusheng</au><au>Ren, Yi</au><au>Sun, Bo</au><au>Feng, Qiang</au><au>Wang, Zili</au><au>Yang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Digital Twin-Driven Life Prediction Method of Lithium-Ion Batteries Based on Adaptive Model Evolution</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-05-06</date><risdate>2022</risdate><volume>15</volume><issue>9</issue><spage>3331</spage><pages>3331-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Accurate life prediction and reliability evaluation of lithium-ion batteries are of great significance for predictive maintenance. In the whole life cycle of a battery, the accurate description of the dynamic and stochastic characteristics of life has always been a key problem. In this paper, the concept of the digital twin is introduced, and a digital twin for reliability based on remaining useful cycle life prediction is proposed for lithium-ion batteries. The capacity degradation model, stochastic degradation model, life prediction, and reliability evaluation model are established to describe the randomness of battery degradation and the dispersion of the life of multiple cells. Based on the Bayesian algorithm, an adaptive evolution method for the model of the digital twin is proposed to improve prediction accuracy, followed by experimental verification. Finally, the life prediction, reliability evaluation, and predictive maintenance of the battery based on the digital twin are implemented. The results show the digital twin for reliability has good accuracy in the whole life cycle. The error can be controlled at about 5% with the adaptive evolution algorithm. For battery L1 and L6 in this case, predictive maintenance costs are expected to decrease by 62.0% and 52.5%, respectively.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35591665</pmid><doi>10.3390/ma15093331</doi><orcidid>https://orcid.org/0000-0002-6081-9507</orcidid><orcidid>https://orcid.org/0000-0003-2454-7839</orcidid><orcidid>https://orcid.org/0000-0002-3665-700X</orcidid><orcidid>https://orcid.org/0000-0003-3526-296X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-05, Vol.15 (9), p.3331
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9103731
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accuracy
Adaptive algorithms
Aircraft
Battery cycles
Degradation
Digital twins
Evolution & development
Evolutionary algorithms
Fault diagnosis
Life prediction
Lithium
Lithium-ion batteries
Maintenance costs
Neural networks
Parameter estimation
Predictive maintenance
Randomness
Rechargeable batteries
Reliability analysis
Simulation
Visualization
title A Digital Twin-Driven Life Prediction Method of Lithium-Ion Batteries Based on Adaptive Model Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Digital%20Twin-Driven%20Life%20Prediction%20Method%20of%20Lithium-Ion%20Batteries%20Based%20on%20Adaptive%20Model%20Evolution&rft.jtitle=Materials&rft.au=Yang,%20Dezhen&rft.date=2022-05-06&rft.volume=15&rft.issue=9&rft.spage=3331&rft.pages=3331-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15093331&rft_dat=%3Cproquest_pubme%3E2663066536%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663066536&rft_id=info:pmid/35591665&rfr_iscdi=true