Optical and Material Characteristics of MoS2/Cu2O Sensor for Detection of Lung Cancer Cell Types in Hydroplegia

In this study, n-type MoS2 monolayer flakes are grown through chemical vapor deposition (CVD), and a p-type Cu2O thin film is grown via electrochemical deposition. The crystal structure of the grown MoS2 flakes is analyzed through transmission electron microscopy. The monolayer structure of the MoS2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2022-05, Vol.23 (9), p.4745
Hauptverfasser: Mukundan, Arvind, Feng, Shih-Wei, Weng, Yu-Hsin, Tsao, Yu-Ming, Artemkina, Sofya B., Fedorov, Vladimir E., Lin, Yen-Sheng, Huang, Yu-Cheng, Wang, Hsiang-Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 4745
container_title International journal of molecular sciences
container_volume 23
creator Mukundan, Arvind
Feng, Shih-Wei
Weng, Yu-Hsin
Tsao, Yu-Ming
Artemkina, Sofya B.
Fedorov, Vladimir E.
Lin, Yen-Sheng
Huang, Yu-Cheng
Wang, Hsiang-Chen
description In this study, n-type MoS2 monolayer flakes are grown through chemical vapor deposition (CVD), and a p-type Cu2O thin film is grown via electrochemical deposition. The crystal structure of the grown MoS2 flakes is analyzed through transmission electron microscopy. The monolayer structure of the MoS2 flakes is verified with Raman spectroscopy, multiphoton excitation microscopy, atomic force microscopy, and photoluminescence (PL) measurements. After the preliminary processing of the grown MoS2 flakes, the sample is then transferred onto a Cu2O thin film to complete a p-n heterogeneous structure. Data are confirmed via scanning electron microscopy, SHG, and Raman mapping measurements. The luminous energy gap between the two materials is examined through PL measurements. Results reveal that the thickness of the single-layer MoS2 film is 0.7 nm. PL mapping shows a micro signal generated at the 627 nm wavelength, which belongs to the B2 excitons of MoS2 and tends to increase gradually when it approaches 670 nm. Finally, the biosensor is used to detect lung cancer cell types in hydroplegia significantly reducing the current busy procedures and longer waiting time for detection. The results suggest that the fabricated sensor is highly sensitive to the change in the photocurrent with the number of each cell, the linear regression of the three cell types is as high as 99%. By measuring the slope of the photocurrent, we can identify the type of cells and the number of cells.
doi_str_mv 10.3390/ijms23094745
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9101548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664807478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-31ab44efac024b774a864a9b5f5c6964d400160538fc3c792a60c393a6a85f953</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMoft_8AQEvHqxm87WbiyDrR4VKD9ZzmKbZmrJN1mRX6L93F4tUD8PMMA8v7_AidJGRG8YUuXWrdaKMKJ5zsYeOM07piBCZ7-_MR-gkpRUhlFGhDtERE0KyjMljFKZN6wzUGPwCv0Jro-uX8gMimGFJ_TXhUOHX8EZvy45O8Zv1KURc9fVgW2taF_xATDq_xCV4YyMubV3j2aaxCTuPx5tFDE1tlw7O0EEFdbLn236K3p8eZ-V4NJk-v5T3k5FhhWpHLIM557YCQyif5zmHQnJQc1EJI5XkC05IJolgRWWYyRUFSQxTDCQUolKCnaK7H92mm6_twljfRqh1E90a4kYHcPrvxbsPvQxfWmUkE7zoBa62AjF8dja1eu2S6d8Cb0OXNJWSFyTn-YBe_kNXoYu-f2-g-mh6q4Oj6x_KxJBStNWvmYzoIUm9myT7BhGYj3s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663090165</pqid></control><display><type>article</type><title>Optical and Material Characteristics of MoS2/Cu2O Sensor for Detection of Lung Cancer Cell Types in Hydroplegia</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Mukundan, Arvind ; Feng, Shih-Wei ; Weng, Yu-Hsin ; Tsao, Yu-Ming ; Artemkina, Sofya B. ; Fedorov, Vladimir E. ; Lin, Yen-Sheng ; Huang, Yu-Cheng ; Wang, Hsiang-Chen</creator><creatorcontrib>Mukundan, Arvind ; Feng, Shih-Wei ; Weng, Yu-Hsin ; Tsao, Yu-Ming ; Artemkina, Sofya B. ; Fedorov, Vladimir E. ; Lin, Yen-Sheng ; Huang, Yu-Cheng ; Wang, Hsiang-Chen</creatorcontrib><description>In this study, n-type MoS2 monolayer flakes are grown through chemical vapor deposition (CVD), and a p-type Cu2O thin film is grown via electrochemical deposition. The crystal structure of the grown MoS2 flakes is analyzed through transmission electron microscopy. The monolayer structure of the MoS2 flakes is verified with Raman spectroscopy, multiphoton excitation microscopy, atomic force microscopy, and photoluminescence (PL) measurements. After the preliminary processing of the grown MoS2 flakes, the sample is then transferred onto a Cu2O thin film to complete a p-n heterogeneous structure. Data are confirmed via scanning electron microscopy, SHG, and Raman mapping measurements. The luminous energy gap between the two materials is examined through PL measurements. Results reveal that the thickness of the single-layer MoS2 film is 0.7 nm. PL mapping shows a micro signal generated at the 627 nm wavelength, which belongs to the B2 excitons of MoS2 and tends to increase gradually when it approaches 670 nm. Finally, the biosensor is used to detect lung cancer cell types in hydroplegia significantly reducing the current busy procedures and longer waiting time for detection. The results suggest that the fabricated sensor is highly sensitive to the change in the photocurrent with the number of each cell, the linear regression of the three cell types is as high as 99%. By measuring the slope of the photocurrent, we can identify the type of cells and the number of cells.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms23094745</identifier><identifier>PMID: 35563136</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Atomic force microscopy ; Biosensors ; Caustic soda ; Chemical vapor deposition ; Copper oxides ; Crystal growth ; Crystal structure ; Electrodes ; Electrolytes ; Electron microscopy ; Energy ; Excitation spectra ; Excitons ; Flakes ; Glass substrates ; Graphene ; Graphite ; Heterogeneous structure ; Lung cancer ; Mapping ; Measurement techniques ; Microscopy ; Molybdenum ; Monolayers ; Nanoparticles ; Photoelectric effect ; Photoelectric emission ; Photoluminescence ; Photons ; Plating ; Raman spectroscopy ; Scanning electron microscopy ; Sensors ; Sodium ; Solid lubricants ; Solvents ; Thickness ; Thin films ; Transmission electron microscopy</subject><ispartof>International journal of molecular sciences, 2022-05, Vol.23 (9), p.4745</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-31ab44efac024b774a864a9b5f5c6964d400160538fc3c792a60c393a6a85f953</citedby><cites>FETCH-LOGICAL-c389t-31ab44efac024b774a864a9b5f5c6964d400160538fc3c792a60c393a6a85f953</cites><orcidid>0000-0002-7741-3722 ; 0000-0003-4107-2062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101548/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101548/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Mukundan, Arvind</creatorcontrib><creatorcontrib>Feng, Shih-Wei</creatorcontrib><creatorcontrib>Weng, Yu-Hsin</creatorcontrib><creatorcontrib>Tsao, Yu-Ming</creatorcontrib><creatorcontrib>Artemkina, Sofya B.</creatorcontrib><creatorcontrib>Fedorov, Vladimir E.</creatorcontrib><creatorcontrib>Lin, Yen-Sheng</creatorcontrib><creatorcontrib>Huang, Yu-Cheng</creatorcontrib><creatorcontrib>Wang, Hsiang-Chen</creatorcontrib><title>Optical and Material Characteristics of MoS2/Cu2O Sensor for Detection of Lung Cancer Cell Types in Hydroplegia</title><title>International journal of molecular sciences</title><description>In this study, n-type MoS2 monolayer flakes are grown through chemical vapor deposition (CVD), and a p-type Cu2O thin film is grown via electrochemical deposition. The crystal structure of the grown MoS2 flakes is analyzed through transmission electron microscopy. The monolayer structure of the MoS2 flakes is verified with Raman spectroscopy, multiphoton excitation microscopy, atomic force microscopy, and photoluminescence (PL) measurements. After the preliminary processing of the grown MoS2 flakes, the sample is then transferred onto a Cu2O thin film to complete a p-n heterogeneous structure. Data are confirmed via scanning electron microscopy, SHG, and Raman mapping measurements. The luminous energy gap between the two materials is examined through PL measurements. Results reveal that the thickness of the single-layer MoS2 film is 0.7 nm. PL mapping shows a micro signal generated at the 627 nm wavelength, which belongs to the B2 excitons of MoS2 and tends to increase gradually when it approaches 670 nm. Finally, the biosensor is used to detect lung cancer cell types in hydroplegia significantly reducing the current busy procedures and longer waiting time for detection. The results suggest that the fabricated sensor is highly sensitive to the change in the photocurrent with the number of each cell, the linear regression of the three cell types is as high as 99%. By measuring the slope of the photocurrent, we can identify the type of cells and the number of cells.</description><subject>Atomic force microscopy</subject><subject>Biosensors</subject><subject>Caustic soda</subject><subject>Chemical vapor deposition</subject><subject>Copper oxides</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electron microscopy</subject><subject>Energy</subject><subject>Excitation spectra</subject><subject>Excitons</subject><subject>Flakes</subject><subject>Glass substrates</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Heterogeneous structure</subject><subject>Lung cancer</subject><subject>Mapping</subject><subject>Measurement techniques</subject><subject>Microscopy</subject><subject>Molybdenum</subject><subject>Monolayers</subject><subject>Nanoparticles</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Plating</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Sensors</subject><subject>Sodium</subject><subject>Solid lubricants</subject><subject>Solvents</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Transmission electron microscopy</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkU1LAzEQhoMoft_8AQEvHqxm87WbiyDrR4VKD9ZzmKbZmrJN1mRX6L93F4tUD8PMMA8v7_AidJGRG8YUuXWrdaKMKJ5zsYeOM07piBCZ7-_MR-gkpRUhlFGhDtERE0KyjMljFKZN6wzUGPwCv0Jro-uX8gMimGFJ_TXhUOHX8EZvy45O8Zv1KURc9fVgW2taF_xATDq_xCV4YyMubV3j2aaxCTuPx5tFDE1tlw7O0EEFdbLn236K3p8eZ-V4NJk-v5T3k5FhhWpHLIM557YCQyif5zmHQnJQc1EJI5XkC05IJolgRWWYyRUFSQxTDCQUolKCnaK7H92mm6_twljfRqh1E90a4kYHcPrvxbsPvQxfWmUkE7zoBa62AjF8dja1eu2S6d8Cb0OXNJWSFyTn-YBe_kNXoYu-f2-g-mh6q4Oj6x_KxJBStNWvmYzoIUm9myT7BhGYj3s</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Mukundan, Arvind</creator><creator>Feng, Shih-Wei</creator><creator>Weng, Yu-Hsin</creator><creator>Tsao, Yu-Ming</creator><creator>Artemkina, Sofya B.</creator><creator>Fedorov, Vladimir E.</creator><creator>Lin, Yen-Sheng</creator><creator>Huang, Yu-Cheng</creator><creator>Wang, Hsiang-Chen</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7741-3722</orcidid><orcidid>https://orcid.org/0000-0003-4107-2062</orcidid></search><sort><creationdate>20220501</creationdate><title>Optical and Material Characteristics of MoS2/Cu2O Sensor for Detection of Lung Cancer Cell Types in Hydroplegia</title><author>Mukundan, Arvind ; Feng, Shih-Wei ; Weng, Yu-Hsin ; Tsao, Yu-Ming ; Artemkina, Sofya B. ; Fedorov, Vladimir E. ; Lin, Yen-Sheng ; Huang, Yu-Cheng ; Wang, Hsiang-Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-31ab44efac024b774a864a9b5f5c6964d400160538fc3c792a60c393a6a85f953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic force microscopy</topic><topic>Biosensors</topic><topic>Caustic soda</topic><topic>Chemical vapor deposition</topic><topic>Copper oxides</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electron microscopy</topic><topic>Energy</topic><topic>Excitation spectra</topic><topic>Excitons</topic><topic>Flakes</topic><topic>Glass substrates</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Heterogeneous structure</topic><topic>Lung cancer</topic><topic>Mapping</topic><topic>Measurement techniques</topic><topic>Microscopy</topic><topic>Molybdenum</topic><topic>Monolayers</topic><topic>Nanoparticles</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Plating</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Sensors</topic><topic>Sodium</topic><topic>Solid lubricants</topic><topic>Solvents</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukundan, Arvind</creatorcontrib><creatorcontrib>Feng, Shih-Wei</creatorcontrib><creatorcontrib>Weng, Yu-Hsin</creatorcontrib><creatorcontrib>Tsao, Yu-Ming</creatorcontrib><creatorcontrib>Artemkina, Sofya B.</creatorcontrib><creatorcontrib>Fedorov, Vladimir E.</creatorcontrib><creatorcontrib>Lin, Yen-Sheng</creatorcontrib><creatorcontrib>Huang, Yu-Cheng</creatorcontrib><creatorcontrib>Wang, Hsiang-Chen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukundan, Arvind</au><au>Feng, Shih-Wei</au><au>Weng, Yu-Hsin</au><au>Tsao, Yu-Ming</au><au>Artemkina, Sofya B.</au><au>Fedorov, Vladimir E.</au><au>Lin, Yen-Sheng</au><au>Huang, Yu-Cheng</au><au>Wang, Hsiang-Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical and Material Characteristics of MoS2/Cu2O Sensor for Detection of Lung Cancer Cell Types in Hydroplegia</atitle><jtitle>International journal of molecular sciences</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>23</volume><issue>9</issue><spage>4745</spage><pages>4745-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>In this study, n-type MoS2 monolayer flakes are grown through chemical vapor deposition (CVD), and a p-type Cu2O thin film is grown via electrochemical deposition. The crystal structure of the grown MoS2 flakes is analyzed through transmission electron microscopy. The monolayer structure of the MoS2 flakes is verified with Raman spectroscopy, multiphoton excitation microscopy, atomic force microscopy, and photoluminescence (PL) measurements. After the preliminary processing of the grown MoS2 flakes, the sample is then transferred onto a Cu2O thin film to complete a p-n heterogeneous structure. Data are confirmed via scanning electron microscopy, SHG, and Raman mapping measurements. The luminous energy gap between the two materials is examined through PL measurements. Results reveal that the thickness of the single-layer MoS2 film is 0.7 nm. PL mapping shows a micro signal generated at the 627 nm wavelength, which belongs to the B2 excitons of MoS2 and tends to increase gradually when it approaches 670 nm. Finally, the biosensor is used to detect lung cancer cell types in hydroplegia significantly reducing the current busy procedures and longer waiting time for detection. The results suggest that the fabricated sensor is highly sensitive to the change in the photocurrent with the number of each cell, the linear regression of the three cell types is as high as 99%. By measuring the slope of the photocurrent, we can identify the type of cells and the number of cells.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35563136</pmid><doi>10.3390/ijms23094745</doi><orcidid>https://orcid.org/0000-0002-7741-3722</orcidid><orcidid>https://orcid.org/0000-0003-4107-2062</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2022-05, Vol.23 (9), p.4745
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9101548
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Atomic force microscopy
Biosensors
Caustic soda
Chemical vapor deposition
Copper oxides
Crystal growth
Crystal structure
Electrodes
Electrolytes
Electron microscopy
Energy
Excitation spectra
Excitons
Flakes
Glass substrates
Graphene
Graphite
Heterogeneous structure
Lung cancer
Mapping
Measurement techniques
Microscopy
Molybdenum
Monolayers
Nanoparticles
Photoelectric effect
Photoelectric emission
Photoluminescence
Photons
Plating
Raman spectroscopy
Scanning electron microscopy
Sensors
Sodium
Solid lubricants
Solvents
Thickness
Thin films
Transmission electron microscopy
title Optical and Material Characteristics of MoS2/Cu2O Sensor for Detection of Lung Cancer Cell Types in Hydroplegia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20and%20Material%20Characteristics%20of%20MoS2/Cu2O%20Sensor%20for%20Detection%20of%20Lung%20Cancer%20Cell%20Types%20in%20Hydroplegia&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Mukundan,%20Arvind&rft.date=2022-05-01&rft.volume=23&rft.issue=9&rft.spage=4745&rft.pages=4745-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms23094745&rft_dat=%3Cproquest_pubme%3E2664807478%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663090165&rft_id=info:pmid/35563136&rfr_iscdi=true