Fracture Toughness of Moldable Low-Temperature Carbonized Elastomer-Based Composites Filled with Shungite and Short Carbon Fibers

This work evaluated the fracture toughness of the low-temperature carbonized elastomer-based composites filled with shungite and short carbon fibers. The effects of the carbonization temperature and filler content on the critical stress intensity factor ( ) were examined. The parameter was obtained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-04, Vol.14 (9), p.1793
Hauptverfasser: Ignatyev, Semen D, Statnik, Eugene S, Ozherelkov, Dmitriy Yu, Zherebtsov, Dmitry D, Salimon, Alexey I, Chukov, Dilyus I, Tcherdyntsev, Victor V, Stepashkin, Andrey A, Korsunsky, Alexander M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1793
container_title Polymers
container_volume 14
creator Ignatyev, Semen D
Statnik, Eugene S
Ozherelkov, Dmitriy Yu
Zherebtsov, Dmitry D
Salimon, Alexey I
Chukov, Dilyus I
Tcherdyntsev, Victor V
Stepashkin, Andrey A
Korsunsky, Alexander M
description This work evaluated the fracture toughness of the low-temperature carbonized elastomer-based composites filled with shungite and short carbon fibers. The effects of the carbonization temperature and filler content on the critical stress intensity factor ( ) were examined. The parameter was obtained using three-point bending tests for specimens with different / ratio (notch depth to sample thickness) ranging from 0.2 to 0.4. Reliable detection of the initiation and propagation of cracks was achieved using an acoustic sensor was attached to the samples during the bending test. The critical stress intensity factor was found to decrease linearly with increasing carbonization temperature. As the temperature increased from 280 to 380 °C, the parameter was drastically reduced from about 5 to 1 MPa·m and was associated with intense outgassing during the carbonization step that resulted in sample porosity. The carbon fiber addition led to some incremental toughening; however, it reduced the statistical dispersion of the values.
doi_str_mv 10.3390/polym14091793
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9101356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664801201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2603-813326699d5d3f9b43de1e1e53af163a56fed5e7014f44895fb3dd980a701e8e3</originalsourceid><addsrcrecordid>eNpdkTFPwzAQhS0EoqgwsqJILCwBO5ek8YIEVQtIRQyU2XLiS5vKiYOdUJWNf46BggB78N3zp6d3OkKOGT0H4PSiNXpTs5hyNuKwQw4iOoIwhpTu_qoH5Mi5FfUnTtKUjfbJABJf8TQ6IG9TK4uutxjMTb9YNuhcYMrg3mglc43BzKzDOdYtWvlJjaXNTVO9ogomWrrO1GjDa-l8PzZ1a1zVoQumldZeWVfdMnhc9s3Cq4FslG-M7bYmnsrRukOyV0rt8Gj7DsnTdDIf34azh5u78dUsLKKUQpgxgMiH5ipRUPI8BoXM3wRkyVKQSVqiSnBEWVzGccaTMgeleEallzBDGJLLL9-2z2tUBTadlVq0tqql3QgjK_H3p6mWYmFeBGeUQZJ6g7OtgTXPPbpO1JUrUGvZoOmd8OnijLLI00Ny-g9dmd42frwPChilHMBT4RdVWOOcxfInDKPiY7_iz349f_J7gh_6e5vwDlwLozs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663100933</pqid></control><display><type>article</type><title>Fracture Toughness of Moldable Low-Temperature Carbonized Elastomer-Based Composites Filled with Shungite and Short Carbon Fibers</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Ignatyev, Semen D ; Statnik, Eugene S ; Ozherelkov, Dmitriy Yu ; Zherebtsov, Dmitry D ; Salimon, Alexey I ; Chukov, Dilyus I ; Tcherdyntsev, Victor V ; Stepashkin, Andrey A ; Korsunsky, Alexander M</creator><creatorcontrib>Ignatyev, Semen D ; Statnik, Eugene S ; Ozherelkov, Dmitriy Yu ; Zherebtsov, Dmitry D ; Salimon, Alexey I ; Chukov, Dilyus I ; Tcherdyntsev, Victor V ; Stepashkin, Andrey A ; Korsunsky, Alexander M</creatorcontrib><description>This work evaluated the fracture toughness of the low-temperature carbonized elastomer-based composites filled with shungite and short carbon fibers. The effects of the carbonization temperature and filler content on the critical stress intensity factor ( ) were examined. The parameter was obtained using three-point bending tests for specimens with different / ratio (notch depth to sample thickness) ranging from 0.2 to 0.4. Reliable detection of the initiation and propagation of cracks was achieved using an acoustic sensor was attached to the samples during the bending test. The critical stress intensity factor was found to decrease linearly with increasing carbonization temperature. As the temperature increased from 280 to 380 °C, the parameter was drastically reduced from about 5 to 1 MPa·m and was associated with intense outgassing during the carbonization step that resulted in sample porosity. The carbon fiber addition led to some incremental toughening; however, it reduced the statistical dispersion of the values.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14091793</identifier><identifier>PMID: 35566962</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acoustic propagation ; Acoustics ; Bend tests ; Carbon fibers ; Carbonization ; Composite materials ; Crack initiation ; Crack propagation ; Elastomers ; Flaw detection ; Fracture toughness ; Geometry ; Graphite ; Low temperature ; Manufacturing ; Outgassing ; Parameters ; Polymers ; Propagation ; Rubber ; Statistical methods ; Stress intensity factors</subject><ispartof>Polymers, 2022-04, Vol.14 (9), p.1793</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2603-813326699d5d3f9b43de1e1e53af163a56fed5e7014f44895fb3dd980a701e8e3</citedby><cites>FETCH-LOGICAL-c2603-813326699d5d3f9b43de1e1e53af163a56fed5e7014f44895fb3dd980a701e8e3</cites><orcidid>0000-0002-4528-150X ; 0000-0002-1105-9206 ; 0000-0002-9048-8083 ; 0000-0001-7415-5513 ; 0000-0003-1553-4526 ; 0000-0002-3558-5198 ; 0000-0001-5134-475X ; 0000-0003-4357-4509 ; 0000-0002-0034-7587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101356/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101356/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35566962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ignatyev, Semen D</creatorcontrib><creatorcontrib>Statnik, Eugene S</creatorcontrib><creatorcontrib>Ozherelkov, Dmitriy Yu</creatorcontrib><creatorcontrib>Zherebtsov, Dmitry D</creatorcontrib><creatorcontrib>Salimon, Alexey I</creatorcontrib><creatorcontrib>Chukov, Dilyus I</creatorcontrib><creatorcontrib>Tcherdyntsev, Victor V</creatorcontrib><creatorcontrib>Stepashkin, Andrey A</creatorcontrib><creatorcontrib>Korsunsky, Alexander M</creatorcontrib><title>Fracture Toughness of Moldable Low-Temperature Carbonized Elastomer-Based Composites Filled with Shungite and Short Carbon Fibers</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>This work evaluated the fracture toughness of the low-temperature carbonized elastomer-based composites filled with shungite and short carbon fibers. The effects of the carbonization temperature and filler content on the critical stress intensity factor ( ) were examined. The parameter was obtained using three-point bending tests for specimens with different / ratio (notch depth to sample thickness) ranging from 0.2 to 0.4. Reliable detection of the initiation and propagation of cracks was achieved using an acoustic sensor was attached to the samples during the bending test. The critical stress intensity factor was found to decrease linearly with increasing carbonization temperature. As the temperature increased from 280 to 380 °C, the parameter was drastically reduced from about 5 to 1 MPa·m and was associated with intense outgassing during the carbonization step that resulted in sample porosity. The carbon fiber addition led to some incremental toughening; however, it reduced the statistical dispersion of the values.</description><subject>Acoustic propagation</subject><subject>Acoustics</subject><subject>Bend tests</subject><subject>Carbon fibers</subject><subject>Carbonization</subject><subject>Composite materials</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Elastomers</subject><subject>Flaw detection</subject><subject>Fracture toughness</subject><subject>Geometry</subject><subject>Graphite</subject><subject>Low temperature</subject><subject>Manufacturing</subject><subject>Outgassing</subject><subject>Parameters</subject><subject>Polymers</subject><subject>Propagation</subject><subject>Rubber</subject><subject>Statistical methods</subject><subject>Stress intensity factors</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkTFPwzAQhS0EoqgwsqJILCwBO5ek8YIEVQtIRQyU2XLiS5vKiYOdUJWNf46BggB78N3zp6d3OkKOGT0H4PSiNXpTs5hyNuKwQw4iOoIwhpTu_qoH5Mi5FfUnTtKUjfbJABJf8TQ6IG9TK4uutxjMTb9YNuhcYMrg3mglc43BzKzDOdYtWvlJjaXNTVO9ogomWrrO1GjDa-l8PzZ1a1zVoQumldZeWVfdMnhc9s3Cq4FslG-M7bYmnsrRukOyV0rt8Gj7DsnTdDIf34azh5u78dUsLKKUQpgxgMiH5ipRUPI8BoXM3wRkyVKQSVqiSnBEWVzGccaTMgeleEallzBDGJLLL9-2z2tUBTadlVq0tqql3QgjK_H3p6mWYmFeBGeUQZJ6g7OtgTXPPbpO1JUrUGvZoOmd8OnijLLI00Ny-g9dmd42frwPChilHMBT4RdVWOOcxfInDKPiY7_iz349f_J7gh_6e5vwDlwLozs</recordid><startdate>20220427</startdate><enddate>20220427</enddate><creator>Ignatyev, Semen D</creator><creator>Statnik, Eugene S</creator><creator>Ozherelkov, Dmitriy Yu</creator><creator>Zherebtsov, Dmitry D</creator><creator>Salimon, Alexey I</creator><creator>Chukov, Dilyus I</creator><creator>Tcherdyntsev, Victor V</creator><creator>Stepashkin, Andrey A</creator><creator>Korsunsky, Alexander M</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4528-150X</orcidid><orcidid>https://orcid.org/0000-0002-1105-9206</orcidid><orcidid>https://orcid.org/0000-0002-9048-8083</orcidid><orcidid>https://orcid.org/0000-0001-7415-5513</orcidid><orcidid>https://orcid.org/0000-0003-1553-4526</orcidid><orcidid>https://orcid.org/0000-0002-3558-5198</orcidid><orcidid>https://orcid.org/0000-0001-5134-475X</orcidid><orcidid>https://orcid.org/0000-0003-4357-4509</orcidid><orcidid>https://orcid.org/0000-0002-0034-7587</orcidid></search><sort><creationdate>20220427</creationdate><title>Fracture Toughness of Moldable Low-Temperature Carbonized Elastomer-Based Composites Filled with Shungite and Short Carbon Fibers</title><author>Ignatyev, Semen D ; Statnik, Eugene S ; Ozherelkov, Dmitriy Yu ; Zherebtsov, Dmitry D ; Salimon, Alexey I ; Chukov, Dilyus I ; Tcherdyntsev, Victor V ; Stepashkin, Andrey A ; Korsunsky, Alexander M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2603-813326699d5d3f9b43de1e1e53af163a56fed5e7014f44895fb3dd980a701e8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic propagation</topic><topic>Acoustics</topic><topic>Bend tests</topic><topic>Carbon fibers</topic><topic>Carbonization</topic><topic>Composite materials</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Elastomers</topic><topic>Flaw detection</topic><topic>Fracture toughness</topic><topic>Geometry</topic><topic>Graphite</topic><topic>Low temperature</topic><topic>Manufacturing</topic><topic>Outgassing</topic><topic>Parameters</topic><topic>Polymers</topic><topic>Propagation</topic><topic>Rubber</topic><topic>Statistical methods</topic><topic>Stress intensity factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ignatyev, Semen D</creatorcontrib><creatorcontrib>Statnik, Eugene S</creatorcontrib><creatorcontrib>Ozherelkov, Dmitriy Yu</creatorcontrib><creatorcontrib>Zherebtsov, Dmitry D</creatorcontrib><creatorcontrib>Salimon, Alexey I</creatorcontrib><creatorcontrib>Chukov, Dilyus I</creatorcontrib><creatorcontrib>Tcherdyntsev, Victor V</creatorcontrib><creatorcontrib>Stepashkin, Andrey A</creatorcontrib><creatorcontrib>Korsunsky, Alexander M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ignatyev, Semen D</au><au>Statnik, Eugene S</au><au>Ozherelkov, Dmitriy Yu</au><au>Zherebtsov, Dmitry D</au><au>Salimon, Alexey I</au><au>Chukov, Dilyus I</au><au>Tcherdyntsev, Victor V</au><au>Stepashkin, Andrey A</au><au>Korsunsky, Alexander M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture Toughness of Moldable Low-Temperature Carbonized Elastomer-Based Composites Filled with Shungite and Short Carbon Fibers</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2022-04-27</date><risdate>2022</risdate><volume>14</volume><issue>9</issue><spage>1793</spage><pages>1793-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>This work evaluated the fracture toughness of the low-temperature carbonized elastomer-based composites filled with shungite and short carbon fibers. The effects of the carbonization temperature and filler content on the critical stress intensity factor ( ) were examined. The parameter was obtained using three-point bending tests for specimens with different / ratio (notch depth to sample thickness) ranging from 0.2 to 0.4. Reliable detection of the initiation and propagation of cracks was achieved using an acoustic sensor was attached to the samples during the bending test. The critical stress intensity factor was found to decrease linearly with increasing carbonization temperature. As the temperature increased from 280 to 380 °C, the parameter was drastically reduced from about 5 to 1 MPa·m and was associated with intense outgassing during the carbonization step that resulted in sample porosity. The carbon fiber addition led to some incremental toughening; however, it reduced the statistical dispersion of the values.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35566962</pmid><doi>10.3390/polym14091793</doi><orcidid>https://orcid.org/0000-0002-4528-150X</orcidid><orcidid>https://orcid.org/0000-0002-1105-9206</orcidid><orcidid>https://orcid.org/0000-0002-9048-8083</orcidid><orcidid>https://orcid.org/0000-0001-7415-5513</orcidid><orcidid>https://orcid.org/0000-0003-1553-4526</orcidid><orcidid>https://orcid.org/0000-0002-3558-5198</orcidid><orcidid>https://orcid.org/0000-0001-5134-475X</orcidid><orcidid>https://orcid.org/0000-0003-4357-4509</orcidid><orcidid>https://orcid.org/0000-0002-0034-7587</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2022-04, Vol.14 (9), p.1793
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9101356
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Acoustic propagation
Acoustics
Bend tests
Carbon fibers
Carbonization
Composite materials
Crack initiation
Crack propagation
Elastomers
Flaw detection
Fracture toughness
Geometry
Graphite
Low temperature
Manufacturing
Outgassing
Parameters
Polymers
Propagation
Rubber
Statistical methods
Stress intensity factors
title Fracture Toughness of Moldable Low-Temperature Carbonized Elastomer-Based Composites Filled with Shungite and Short Carbon Fibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A58%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20Toughness%20of%20Moldable%20Low-Temperature%20Carbonized%20Elastomer-Based%20Composites%20Filled%20with%20Shungite%20and%20Short%20Carbon%20Fibers&rft.jtitle=Polymers&rft.au=Ignatyev,%20Semen%20D&rft.date=2022-04-27&rft.volume=14&rft.issue=9&rft.spage=1793&rft.pages=1793-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14091793&rft_dat=%3Cproquest_pubme%3E2664801201%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663100933&rft_id=info:pmid/35566962&rfr_iscdi=true