Fracture Toughness of Moldable Low-Temperature Carbonized Elastomer-Based Composites Filled with Shungite and Short Carbon Fibers
This work evaluated the fracture toughness of the low-temperature carbonized elastomer-based composites filled with shungite and short carbon fibers. The effects of the carbonization temperature and filler content on the critical stress intensity factor ( ) were examined. The parameter was obtained...
Gespeichert in:
Veröffentlicht in: | Polymers 2022-04, Vol.14 (9), p.1793 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1793 |
container_title | Polymers |
container_volume | 14 |
creator | Ignatyev, Semen D Statnik, Eugene S Ozherelkov, Dmitriy Yu Zherebtsov, Dmitry D Salimon, Alexey I Chukov, Dilyus I Tcherdyntsev, Victor V Stepashkin, Andrey A Korsunsky, Alexander M |
description | This work evaluated the fracture toughness of the low-temperature carbonized elastomer-based composites filled with shungite and short carbon fibers. The effects of the carbonization temperature and filler content on the critical stress intensity factor (
) were examined. The
parameter was obtained using three-point bending tests for specimens with different
/
ratio (notch depth to sample thickness) ranging from 0.2 to 0.4. Reliable detection of the initiation and propagation of cracks was achieved using an acoustic sensor was attached to the samples during the bending test. The critical stress intensity factor was found to decrease linearly with increasing carbonization temperature. As the temperature increased from 280 to 380 °C, the
parameter was drastically reduced from about 5 to 1 MPa·m
and was associated with intense outgassing during the carbonization step that resulted in sample porosity. The carbon fiber addition led to some incremental toughening; however, it reduced the statistical dispersion of the
values. |
doi_str_mv | 10.3390/polym14091793 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9101356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664801201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2603-813326699d5d3f9b43de1e1e53af163a56fed5e7014f44895fb3dd980a701e8e3</originalsourceid><addsrcrecordid>eNpdkTFPwzAQhS0EoqgwsqJILCwBO5ek8YIEVQtIRQyU2XLiS5vKiYOdUJWNf46BggB78N3zp6d3OkKOGT0H4PSiNXpTs5hyNuKwQw4iOoIwhpTu_qoH5Mi5FfUnTtKUjfbJABJf8TQ6IG9TK4uutxjMTb9YNuhcYMrg3mglc43BzKzDOdYtWvlJjaXNTVO9ogomWrrO1GjDa-l8PzZ1a1zVoQumldZeWVfdMnhc9s3Cq4FslG-M7bYmnsrRukOyV0rt8Gj7DsnTdDIf34azh5u78dUsLKKUQpgxgMiH5ipRUPI8BoXM3wRkyVKQSVqiSnBEWVzGccaTMgeleEallzBDGJLLL9-2z2tUBTadlVq0tqql3QgjK_H3p6mWYmFeBGeUQZJ6g7OtgTXPPbpO1JUrUGvZoOmd8OnijLLI00Ny-g9dmd42frwPChilHMBT4RdVWOOcxfInDKPiY7_iz349f_J7gh_6e5vwDlwLozs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663100933</pqid></control><display><type>article</type><title>Fracture Toughness of Moldable Low-Temperature Carbonized Elastomer-Based Composites Filled with Shungite and Short Carbon Fibers</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Ignatyev, Semen D ; Statnik, Eugene S ; Ozherelkov, Dmitriy Yu ; Zherebtsov, Dmitry D ; Salimon, Alexey I ; Chukov, Dilyus I ; Tcherdyntsev, Victor V ; Stepashkin, Andrey A ; Korsunsky, Alexander M</creator><creatorcontrib>Ignatyev, Semen D ; Statnik, Eugene S ; Ozherelkov, Dmitriy Yu ; Zherebtsov, Dmitry D ; Salimon, Alexey I ; Chukov, Dilyus I ; Tcherdyntsev, Victor V ; Stepashkin, Andrey A ; Korsunsky, Alexander M</creatorcontrib><description>This work evaluated the fracture toughness of the low-temperature carbonized elastomer-based composites filled with shungite and short carbon fibers. The effects of the carbonization temperature and filler content on the critical stress intensity factor (
) were examined. The
parameter was obtained using three-point bending tests for specimens with different
/
ratio (notch depth to sample thickness) ranging from 0.2 to 0.4. Reliable detection of the initiation and propagation of cracks was achieved using an acoustic sensor was attached to the samples during the bending test. The critical stress intensity factor was found to decrease linearly with increasing carbonization temperature. As the temperature increased from 280 to 380 °C, the
parameter was drastically reduced from about 5 to 1 MPa·m
and was associated with intense outgassing during the carbonization step that resulted in sample porosity. The carbon fiber addition led to some incremental toughening; however, it reduced the statistical dispersion of the
values.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14091793</identifier><identifier>PMID: 35566962</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acoustic propagation ; Acoustics ; Bend tests ; Carbon fibers ; Carbonization ; Composite materials ; Crack initiation ; Crack propagation ; Elastomers ; Flaw detection ; Fracture toughness ; Geometry ; Graphite ; Low temperature ; Manufacturing ; Outgassing ; Parameters ; Polymers ; Propagation ; Rubber ; Statistical methods ; Stress intensity factors</subject><ispartof>Polymers, 2022-04, Vol.14 (9), p.1793</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2603-813326699d5d3f9b43de1e1e53af163a56fed5e7014f44895fb3dd980a701e8e3</citedby><cites>FETCH-LOGICAL-c2603-813326699d5d3f9b43de1e1e53af163a56fed5e7014f44895fb3dd980a701e8e3</cites><orcidid>0000-0002-4528-150X ; 0000-0002-1105-9206 ; 0000-0002-9048-8083 ; 0000-0001-7415-5513 ; 0000-0003-1553-4526 ; 0000-0002-3558-5198 ; 0000-0001-5134-475X ; 0000-0003-4357-4509 ; 0000-0002-0034-7587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101356/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101356/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35566962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ignatyev, Semen D</creatorcontrib><creatorcontrib>Statnik, Eugene S</creatorcontrib><creatorcontrib>Ozherelkov, Dmitriy Yu</creatorcontrib><creatorcontrib>Zherebtsov, Dmitry D</creatorcontrib><creatorcontrib>Salimon, Alexey I</creatorcontrib><creatorcontrib>Chukov, Dilyus I</creatorcontrib><creatorcontrib>Tcherdyntsev, Victor V</creatorcontrib><creatorcontrib>Stepashkin, Andrey A</creatorcontrib><creatorcontrib>Korsunsky, Alexander M</creatorcontrib><title>Fracture Toughness of Moldable Low-Temperature Carbonized Elastomer-Based Composites Filled with Shungite and Short Carbon Fibers</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>This work evaluated the fracture toughness of the low-temperature carbonized elastomer-based composites filled with shungite and short carbon fibers. The effects of the carbonization temperature and filler content on the critical stress intensity factor (
) were examined. The
parameter was obtained using three-point bending tests for specimens with different
/
ratio (notch depth to sample thickness) ranging from 0.2 to 0.4. Reliable detection of the initiation and propagation of cracks was achieved using an acoustic sensor was attached to the samples during the bending test. The critical stress intensity factor was found to decrease linearly with increasing carbonization temperature. As the temperature increased from 280 to 380 °C, the
parameter was drastically reduced from about 5 to 1 MPa·m
and was associated with intense outgassing during the carbonization step that resulted in sample porosity. The carbon fiber addition led to some incremental toughening; however, it reduced the statistical dispersion of the
values.</description><subject>Acoustic propagation</subject><subject>Acoustics</subject><subject>Bend tests</subject><subject>Carbon fibers</subject><subject>Carbonization</subject><subject>Composite materials</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Elastomers</subject><subject>Flaw detection</subject><subject>Fracture toughness</subject><subject>Geometry</subject><subject>Graphite</subject><subject>Low temperature</subject><subject>Manufacturing</subject><subject>Outgassing</subject><subject>Parameters</subject><subject>Polymers</subject><subject>Propagation</subject><subject>Rubber</subject><subject>Statistical methods</subject><subject>Stress intensity factors</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkTFPwzAQhS0EoqgwsqJILCwBO5ek8YIEVQtIRQyU2XLiS5vKiYOdUJWNf46BggB78N3zp6d3OkKOGT0H4PSiNXpTs5hyNuKwQw4iOoIwhpTu_qoH5Mi5FfUnTtKUjfbJABJf8TQ6IG9TK4uutxjMTb9YNuhcYMrg3mglc43BzKzDOdYtWvlJjaXNTVO9ogomWrrO1GjDa-l8PzZ1a1zVoQumldZeWVfdMnhc9s3Cq4FslG-M7bYmnsrRukOyV0rt8Gj7DsnTdDIf34azh5u78dUsLKKUQpgxgMiH5ipRUPI8BoXM3wRkyVKQSVqiSnBEWVzGccaTMgeleEallzBDGJLLL9-2z2tUBTadlVq0tqql3QgjK_H3p6mWYmFeBGeUQZJ6g7OtgTXPPbpO1JUrUGvZoOmd8OnijLLI00Ny-g9dmd42frwPChilHMBT4RdVWOOcxfInDKPiY7_iz349f_J7gh_6e5vwDlwLozs</recordid><startdate>20220427</startdate><enddate>20220427</enddate><creator>Ignatyev, Semen D</creator><creator>Statnik, Eugene S</creator><creator>Ozherelkov, Dmitriy Yu</creator><creator>Zherebtsov, Dmitry D</creator><creator>Salimon, Alexey I</creator><creator>Chukov, Dilyus I</creator><creator>Tcherdyntsev, Victor V</creator><creator>Stepashkin, Andrey A</creator><creator>Korsunsky, Alexander M</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4528-150X</orcidid><orcidid>https://orcid.org/0000-0002-1105-9206</orcidid><orcidid>https://orcid.org/0000-0002-9048-8083</orcidid><orcidid>https://orcid.org/0000-0001-7415-5513</orcidid><orcidid>https://orcid.org/0000-0003-1553-4526</orcidid><orcidid>https://orcid.org/0000-0002-3558-5198</orcidid><orcidid>https://orcid.org/0000-0001-5134-475X</orcidid><orcidid>https://orcid.org/0000-0003-4357-4509</orcidid><orcidid>https://orcid.org/0000-0002-0034-7587</orcidid></search><sort><creationdate>20220427</creationdate><title>Fracture Toughness of Moldable Low-Temperature Carbonized Elastomer-Based Composites Filled with Shungite and Short Carbon Fibers</title><author>Ignatyev, Semen D ; Statnik, Eugene S ; Ozherelkov, Dmitriy Yu ; Zherebtsov, Dmitry D ; Salimon, Alexey I ; Chukov, Dilyus I ; Tcherdyntsev, Victor V ; Stepashkin, Andrey A ; Korsunsky, Alexander M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2603-813326699d5d3f9b43de1e1e53af163a56fed5e7014f44895fb3dd980a701e8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic propagation</topic><topic>Acoustics</topic><topic>Bend tests</topic><topic>Carbon fibers</topic><topic>Carbonization</topic><topic>Composite materials</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Elastomers</topic><topic>Flaw detection</topic><topic>Fracture toughness</topic><topic>Geometry</topic><topic>Graphite</topic><topic>Low temperature</topic><topic>Manufacturing</topic><topic>Outgassing</topic><topic>Parameters</topic><topic>Polymers</topic><topic>Propagation</topic><topic>Rubber</topic><topic>Statistical methods</topic><topic>Stress intensity factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ignatyev, Semen D</creatorcontrib><creatorcontrib>Statnik, Eugene S</creatorcontrib><creatorcontrib>Ozherelkov, Dmitriy Yu</creatorcontrib><creatorcontrib>Zherebtsov, Dmitry D</creatorcontrib><creatorcontrib>Salimon, Alexey I</creatorcontrib><creatorcontrib>Chukov, Dilyus I</creatorcontrib><creatorcontrib>Tcherdyntsev, Victor V</creatorcontrib><creatorcontrib>Stepashkin, Andrey A</creatorcontrib><creatorcontrib>Korsunsky, Alexander M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ignatyev, Semen D</au><au>Statnik, Eugene S</au><au>Ozherelkov, Dmitriy Yu</au><au>Zherebtsov, Dmitry D</au><au>Salimon, Alexey I</au><au>Chukov, Dilyus I</au><au>Tcherdyntsev, Victor V</au><au>Stepashkin, Andrey A</au><au>Korsunsky, Alexander M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture Toughness of Moldable Low-Temperature Carbonized Elastomer-Based Composites Filled with Shungite and Short Carbon Fibers</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2022-04-27</date><risdate>2022</risdate><volume>14</volume><issue>9</issue><spage>1793</spage><pages>1793-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>This work evaluated the fracture toughness of the low-temperature carbonized elastomer-based composites filled with shungite and short carbon fibers. The effects of the carbonization temperature and filler content on the critical stress intensity factor (
) were examined. The
parameter was obtained using three-point bending tests for specimens with different
/
ratio (notch depth to sample thickness) ranging from 0.2 to 0.4. Reliable detection of the initiation and propagation of cracks was achieved using an acoustic sensor was attached to the samples during the bending test. The critical stress intensity factor was found to decrease linearly with increasing carbonization temperature. As the temperature increased from 280 to 380 °C, the
parameter was drastically reduced from about 5 to 1 MPa·m
and was associated with intense outgassing during the carbonization step that resulted in sample porosity. The carbon fiber addition led to some incremental toughening; however, it reduced the statistical dispersion of the
values.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35566962</pmid><doi>10.3390/polym14091793</doi><orcidid>https://orcid.org/0000-0002-4528-150X</orcidid><orcidid>https://orcid.org/0000-0002-1105-9206</orcidid><orcidid>https://orcid.org/0000-0002-9048-8083</orcidid><orcidid>https://orcid.org/0000-0001-7415-5513</orcidid><orcidid>https://orcid.org/0000-0003-1553-4526</orcidid><orcidid>https://orcid.org/0000-0002-3558-5198</orcidid><orcidid>https://orcid.org/0000-0001-5134-475X</orcidid><orcidid>https://orcid.org/0000-0003-4357-4509</orcidid><orcidid>https://orcid.org/0000-0002-0034-7587</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2022-04, Vol.14 (9), p.1793 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9101356 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Acoustic propagation Acoustics Bend tests Carbon fibers Carbonization Composite materials Crack initiation Crack propagation Elastomers Flaw detection Fracture toughness Geometry Graphite Low temperature Manufacturing Outgassing Parameters Polymers Propagation Rubber Statistical methods Stress intensity factors |
title | Fracture Toughness of Moldable Low-Temperature Carbonized Elastomer-Based Composites Filled with Shungite and Short Carbon Fibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A58%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20Toughness%20of%20Moldable%20Low-Temperature%20Carbonized%20Elastomer-Based%20Composites%20Filled%20with%20Shungite%20and%20Short%20Carbon%20Fibers&rft.jtitle=Polymers&rft.au=Ignatyev,%20Semen%20D&rft.date=2022-04-27&rft.volume=14&rft.issue=9&rft.spage=1793&rft.pages=1793-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14091793&rft_dat=%3Cproquest_pubme%3E2664801201%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663100933&rft_id=info:pmid/35566962&rfr_iscdi=true |