Characterization of Viscoelastic Poisson's Ratio of Engineering Elastomers via DIC-Based Creep Testing
New data of creep and viscoelastic Poisson's ratio, ν(t), of five engineering elastomers (Ethylene Propylene-Diene Monomer, Flouroelastomer (Viton ), nitrile butadiene rubber, silicone rubber and neoprene/chloroprene rubber) at different stress (200, 400 and 600 kPa) and temperature (25, 50 and...
Gespeichert in:
Veröffentlicht in: | Polymers 2022-04, Vol.14 (9), p.1837 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1837 |
container_title | Polymers |
container_volume | 14 |
creator | Sotomayor-Del-Moral, Jonathan A Pascual-Francisco, Juan B Susarrey-Huerta, Orlando Resendiz-Calderon, Cesar D Gallardo-Hernández, Ezequiel A Farfan-Cabrera, Leonardo I |
description | New data of creep and viscoelastic Poisson's ratio, ν(t), of five engineering elastomers (Ethylene Propylene-Diene Monomer, Flouroelastomer (Viton
), nitrile butadiene rubber, silicone rubber and neoprene/chloroprene rubber) at different stress (200, 400 and 600 kPa) and temperature (25, 50 and 80 °C) are presented. The ν(t) was characterized through an experimental methodological approach based on creep testing (30 min) and strain (axial and transverse) measurements by digital image correlation. Initially, creep behavior in axial and transverse directions was characterized for each elastomer and condition, and then each creep curve was fitted to a four-element creep model to obtain the corresponding functions. The obtained functions were used to estimate ν(t) for prolonged times (300 h) through a convolution equation. Overall, the characterization was achieved for the five elastomers results exhibiting ν(t) increasing with temperature and time from about 0.3 (for short-term loading) to reach and stabilize at about 0.48 (for long-term loading). |
doi_str_mv | 10.3390/polym14091837 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9099800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663100781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-2c3e2bd1f3f3404502ba2ff8fc71e03da6eb792a7e8e8c37d1d65262d586f143</originalsourceid><addsrcrecordid>eNpdkc9LHDEUx4NYuqIee5WAB71MzY-ZZOYi1Om2FQRLWXoN2czLbmQm2Sazgv71zbh20ebyEt7nffm-fBH6RMlnzhtytQn900BL0tCaywN0xIjkRckFOXxzn6HTlB5IPmUlBJUf0YxXlZD5fYRsu9ZRmxGie9ajCx4Hi3-7ZAL0Oo3O4J_BpRT8RcK_JmDqz_3KecgjfoXnExYGiAk_Oo2_3rbFjU7Q4TYCbPACsohfnaAPVvcJTl_rMVp8my_aH8Xd_ffb9stdYUpajQUzHNiyo5ZbXma7hC01s7a2RlIgvNMClrJhWkINteGyo52omGBdVQtLS36Mrneym-1ygM6AH6Pu1Sa6QccnFbRT7zverdUqPKqGNE1NSBa4fBWI4c82e1dD_gvoe-0hbJNiQpQ1oeIFPf8PfQjb6PN2E8UpIbKmmSp2lIkhpQh2b4YSNWWo3mWY-bO3G-zpf4nxv-Y8mRs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663100781</pqid></control><display><type>article</type><title>Characterization of Viscoelastic Poisson's Ratio of Engineering Elastomers via DIC-Based Creep Testing</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sotomayor-Del-Moral, Jonathan A ; Pascual-Francisco, Juan B ; Susarrey-Huerta, Orlando ; Resendiz-Calderon, Cesar D ; Gallardo-Hernández, Ezequiel A ; Farfan-Cabrera, Leonardo I</creator><creatorcontrib>Sotomayor-Del-Moral, Jonathan A ; Pascual-Francisco, Juan B ; Susarrey-Huerta, Orlando ; Resendiz-Calderon, Cesar D ; Gallardo-Hernández, Ezequiel A ; Farfan-Cabrera, Leonardo I</creatorcontrib><description>New data of creep and viscoelastic Poisson's ratio, ν(t), of five engineering elastomers (Ethylene Propylene-Diene Monomer, Flouroelastomer (Viton
), nitrile butadiene rubber, silicone rubber and neoprene/chloroprene rubber) at different stress (200, 400 and 600 kPa) and temperature (25, 50 and 80 °C) are presented. The ν(t) was characterized through an experimental methodological approach based on creep testing (30 min) and strain (axial and transverse) measurements by digital image correlation. Initially, creep behavior in axial and transverse directions was characterized for each elastomer and condition, and then each creep curve was fitted to a four-element creep model to obtain the corresponding functions. The obtained functions were used to estimate ν(t) for prolonged times (300 h) through a convolution equation. Overall, the characterization was achieved for the five elastomers results exhibiting ν(t) increasing with temperature and time from about 0.3 (for short-term loading) to reach and stabilize at about 0.48 (for long-term loading).</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14091837</identifier><identifier>PMID: 35567004</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Butadiene ; Creep tests ; Deformation ; Digital imaging ; Elastomers ; Engineering ; Laplace transforms ; Light ; Measurement techniques ; Mechanical properties ; Moire interferometry ; Neoprene ; Nitrile rubber ; Poisson's ratio ; Propylene ; Rubber ; Silicone rubber ; Simulation ; Strain gauges ; Viscoelasticity</subject><ispartof>Polymers, 2022-04, Vol.14 (9), p.1837</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-2c3e2bd1f3f3404502ba2ff8fc71e03da6eb792a7e8e8c37d1d65262d586f143</citedby><cites>FETCH-LOGICAL-c415t-2c3e2bd1f3f3404502ba2ff8fc71e03da6eb792a7e8e8c37d1d65262d586f143</cites><orcidid>0000-0002-8812-7190 ; 0000-0002-5008-5888 ; 0000-0003-3347-6438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099800/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099800/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35567004$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sotomayor-Del-Moral, Jonathan A</creatorcontrib><creatorcontrib>Pascual-Francisco, Juan B</creatorcontrib><creatorcontrib>Susarrey-Huerta, Orlando</creatorcontrib><creatorcontrib>Resendiz-Calderon, Cesar D</creatorcontrib><creatorcontrib>Gallardo-Hernández, Ezequiel A</creatorcontrib><creatorcontrib>Farfan-Cabrera, Leonardo I</creatorcontrib><title>Characterization of Viscoelastic Poisson's Ratio of Engineering Elastomers via DIC-Based Creep Testing</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>New data of creep and viscoelastic Poisson's ratio, ν(t), of five engineering elastomers (Ethylene Propylene-Diene Monomer, Flouroelastomer (Viton
), nitrile butadiene rubber, silicone rubber and neoprene/chloroprene rubber) at different stress (200, 400 and 600 kPa) and temperature (25, 50 and 80 °C) are presented. The ν(t) was characterized through an experimental methodological approach based on creep testing (30 min) and strain (axial and transverse) measurements by digital image correlation. Initially, creep behavior in axial and transverse directions was characterized for each elastomer and condition, and then each creep curve was fitted to a four-element creep model to obtain the corresponding functions. The obtained functions were used to estimate ν(t) for prolonged times (300 h) through a convolution equation. Overall, the characterization was achieved for the five elastomers results exhibiting ν(t) increasing with temperature and time from about 0.3 (for short-term loading) to reach and stabilize at about 0.48 (for long-term loading).</description><subject>Butadiene</subject><subject>Creep tests</subject><subject>Deformation</subject><subject>Digital imaging</subject><subject>Elastomers</subject><subject>Engineering</subject><subject>Laplace transforms</subject><subject>Light</subject><subject>Measurement techniques</subject><subject>Mechanical properties</subject><subject>Moire interferometry</subject><subject>Neoprene</subject><subject>Nitrile rubber</subject><subject>Poisson's ratio</subject><subject>Propylene</subject><subject>Rubber</subject><subject>Silicone rubber</subject><subject>Simulation</subject><subject>Strain gauges</subject><subject>Viscoelasticity</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc9LHDEUx4NYuqIee5WAB71MzY-ZZOYi1Om2FQRLWXoN2czLbmQm2Sazgv71zbh20ebyEt7nffm-fBH6RMlnzhtytQn900BL0tCaywN0xIjkRckFOXxzn6HTlB5IPmUlBJUf0YxXlZD5fYRsu9ZRmxGie9ajCx4Hi3-7ZAL0Oo3O4J_BpRT8RcK_JmDqz_3KecgjfoXnExYGiAk_Oo2_3rbFjU7Q4TYCbPACsohfnaAPVvcJTl_rMVp8my_aH8Xd_ffb9stdYUpajQUzHNiyo5ZbXma7hC01s7a2RlIgvNMClrJhWkINteGyo52omGBdVQtLS36Mrneym-1ygM6AH6Pu1Sa6QccnFbRT7zverdUqPKqGNE1NSBa4fBWI4c82e1dD_gvoe-0hbJNiQpQ1oeIFPf8PfQjb6PN2E8UpIbKmmSp2lIkhpQh2b4YSNWWo3mWY-bO3G-zpf4nxv-Y8mRs</recordid><startdate>20220429</startdate><enddate>20220429</enddate><creator>Sotomayor-Del-Moral, Jonathan A</creator><creator>Pascual-Francisco, Juan B</creator><creator>Susarrey-Huerta, Orlando</creator><creator>Resendiz-Calderon, Cesar D</creator><creator>Gallardo-Hernández, Ezequiel A</creator><creator>Farfan-Cabrera, Leonardo I</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8812-7190</orcidid><orcidid>https://orcid.org/0000-0002-5008-5888</orcidid><orcidid>https://orcid.org/0000-0003-3347-6438</orcidid></search><sort><creationdate>20220429</creationdate><title>Characterization of Viscoelastic Poisson's Ratio of Engineering Elastomers via DIC-Based Creep Testing</title><author>Sotomayor-Del-Moral, Jonathan A ; Pascual-Francisco, Juan B ; Susarrey-Huerta, Orlando ; Resendiz-Calderon, Cesar D ; Gallardo-Hernández, Ezequiel A ; Farfan-Cabrera, Leonardo I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-2c3e2bd1f3f3404502ba2ff8fc71e03da6eb792a7e8e8c37d1d65262d586f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Butadiene</topic><topic>Creep tests</topic><topic>Deformation</topic><topic>Digital imaging</topic><topic>Elastomers</topic><topic>Engineering</topic><topic>Laplace transforms</topic><topic>Light</topic><topic>Measurement techniques</topic><topic>Mechanical properties</topic><topic>Moire interferometry</topic><topic>Neoprene</topic><topic>Nitrile rubber</topic><topic>Poisson's ratio</topic><topic>Propylene</topic><topic>Rubber</topic><topic>Silicone rubber</topic><topic>Simulation</topic><topic>Strain gauges</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sotomayor-Del-Moral, Jonathan A</creatorcontrib><creatorcontrib>Pascual-Francisco, Juan B</creatorcontrib><creatorcontrib>Susarrey-Huerta, Orlando</creatorcontrib><creatorcontrib>Resendiz-Calderon, Cesar D</creatorcontrib><creatorcontrib>Gallardo-Hernández, Ezequiel A</creatorcontrib><creatorcontrib>Farfan-Cabrera, Leonardo I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sotomayor-Del-Moral, Jonathan A</au><au>Pascual-Francisco, Juan B</au><au>Susarrey-Huerta, Orlando</au><au>Resendiz-Calderon, Cesar D</au><au>Gallardo-Hernández, Ezequiel A</au><au>Farfan-Cabrera, Leonardo I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Viscoelastic Poisson's Ratio of Engineering Elastomers via DIC-Based Creep Testing</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2022-04-29</date><risdate>2022</risdate><volume>14</volume><issue>9</issue><spage>1837</spage><pages>1837-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>New data of creep and viscoelastic Poisson's ratio, ν(t), of five engineering elastomers (Ethylene Propylene-Diene Monomer, Flouroelastomer (Viton
), nitrile butadiene rubber, silicone rubber and neoprene/chloroprene rubber) at different stress (200, 400 and 600 kPa) and temperature (25, 50 and 80 °C) are presented. The ν(t) was characterized through an experimental methodological approach based on creep testing (30 min) and strain (axial and transverse) measurements by digital image correlation. Initially, creep behavior in axial and transverse directions was characterized for each elastomer and condition, and then each creep curve was fitted to a four-element creep model to obtain the corresponding functions. The obtained functions were used to estimate ν(t) for prolonged times (300 h) through a convolution equation. Overall, the characterization was achieved for the five elastomers results exhibiting ν(t) increasing with temperature and time from about 0.3 (for short-term loading) to reach and stabilize at about 0.48 (for long-term loading).</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35567004</pmid><doi>10.3390/polym14091837</doi><orcidid>https://orcid.org/0000-0002-8812-7190</orcidid><orcidid>https://orcid.org/0000-0002-5008-5888</orcidid><orcidid>https://orcid.org/0000-0003-3347-6438</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2022-04, Vol.14 (9), p.1837 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9099800 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Butadiene Creep tests Deformation Digital imaging Elastomers Engineering Laplace transforms Light Measurement techniques Mechanical properties Moire interferometry Neoprene Nitrile rubber Poisson's ratio Propylene Rubber Silicone rubber Simulation Strain gauges Viscoelasticity |
title | Characterization of Viscoelastic Poisson's Ratio of Engineering Elastomers via DIC-Based Creep Testing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Viscoelastic%20Poisson's%20Ratio%20of%20Engineering%20Elastomers%20via%20DIC-Based%20Creep%20Testing&rft.jtitle=Polymers&rft.au=Sotomayor-Del-Moral,%20Jonathan%20A&rft.date=2022-04-29&rft.volume=14&rft.issue=9&rft.spage=1837&rft.pages=1837-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14091837&rft_dat=%3Cproquest_pubme%3E2663100781%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663100781&rft_id=info:pmid/35567004&rfr_iscdi=true |