Characterization of Viscoelastic Poisson's Ratio of Engineering Elastomers via DIC-Based Creep Testing

New data of creep and viscoelastic Poisson's ratio, ν(t), of five engineering elastomers (Ethylene Propylene-Diene Monomer, Flouroelastomer (Viton ), nitrile butadiene rubber, silicone rubber and neoprene/chloroprene rubber) at different stress (200, 400 and 600 kPa) and temperature (25, 50 and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-04, Vol.14 (9), p.1837
Hauptverfasser: Sotomayor-Del-Moral, Jonathan A, Pascual-Francisco, Juan B, Susarrey-Huerta, Orlando, Resendiz-Calderon, Cesar D, Gallardo-Hernández, Ezequiel A, Farfan-Cabrera, Leonardo I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1837
container_title Polymers
container_volume 14
creator Sotomayor-Del-Moral, Jonathan A
Pascual-Francisco, Juan B
Susarrey-Huerta, Orlando
Resendiz-Calderon, Cesar D
Gallardo-Hernández, Ezequiel A
Farfan-Cabrera, Leonardo I
description New data of creep and viscoelastic Poisson's ratio, ν(t), of five engineering elastomers (Ethylene Propylene-Diene Monomer, Flouroelastomer (Viton ), nitrile butadiene rubber, silicone rubber and neoprene/chloroprene rubber) at different stress (200, 400 and 600 kPa) and temperature (25, 50 and 80 °C) are presented. The ν(t) was characterized through an experimental methodological approach based on creep testing (30 min) and strain (axial and transverse) measurements by digital image correlation. Initially, creep behavior in axial and transverse directions was characterized for each elastomer and condition, and then each creep curve was fitted to a four-element creep model to obtain the corresponding functions. The obtained functions were used to estimate ν(t) for prolonged times (300 h) through a convolution equation. Overall, the characterization was achieved for the five elastomers results exhibiting ν(t) increasing with temperature and time from about 0.3 (for short-term loading) to reach and stabilize at about 0.48 (for long-term loading).
doi_str_mv 10.3390/polym14091837
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9099800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663100781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-2c3e2bd1f3f3404502ba2ff8fc71e03da6eb792a7e8e8c37d1d65262d586f143</originalsourceid><addsrcrecordid>eNpdkc9LHDEUx4NYuqIee5WAB71MzY-ZZOYi1Om2FQRLWXoN2czLbmQm2Sazgv71zbh20ebyEt7nffm-fBH6RMlnzhtytQn900BL0tCaywN0xIjkRckFOXxzn6HTlB5IPmUlBJUf0YxXlZD5fYRsu9ZRmxGie9ajCx4Hi3-7ZAL0Oo3O4J_BpRT8RcK_JmDqz_3KecgjfoXnExYGiAk_Oo2_3rbFjU7Q4TYCbPACsohfnaAPVvcJTl_rMVp8my_aH8Xd_ffb9stdYUpajQUzHNiyo5ZbXma7hC01s7a2RlIgvNMClrJhWkINteGyo52omGBdVQtLS36Mrneym-1ygM6AH6Pu1Sa6QccnFbRT7zverdUqPKqGNE1NSBa4fBWI4c82e1dD_gvoe-0hbJNiQpQ1oeIFPf8PfQjb6PN2E8UpIbKmmSp2lIkhpQh2b4YSNWWo3mWY-bO3G-zpf4nxv-Y8mRs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663100781</pqid></control><display><type>article</type><title>Characterization of Viscoelastic Poisson's Ratio of Engineering Elastomers via DIC-Based Creep Testing</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sotomayor-Del-Moral, Jonathan A ; Pascual-Francisco, Juan B ; Susarrey-Huerta, Orlando ; Resendiz-Calderon, Cesar D ; Gallardo-Hernández, Ezequiel A ; Farfan-Cabrera, Leonardo I</creator><creatorcontrib>Sotomayor-Del-Moral, Jonathan A ; Pascual-Francisco, Juan B ; Susarrey-Huerta, Orlando ; Resendiz-Calderon, Cesar D ; Gallardo-Hernández, Ezequiel A ; Farfan-Cabrera, Leonardo I</creatorcontrib><description>New data of creep and viscoelastic Poisson's ratio, ν(t), of five engineering elastomers (Ethylene Propylene-Diene Monomer, Flouroelastomer (Viton ), nitrile butadiene rubber, silicone rubber and neoprene/chloroprene rubber) at different stress (200, 400 and 600 kPa) and temperature (25, 50 and 80 °C) are presented. The ν(t) was characterized through an experimental methodological approach based on creep testing (30 min) and strain (axial and transverse) measurements by digital image correlation. Initially, creep behavior in axial and transverse directions was characterized for each elastomer and condition, and then each creep curve was fitted to a four-element creep model to obtain the corresponding functions. The obtained functions were used to estimate ν(t) for prolonged times (300 h) through a convolution equation. Overall, the characterization was achieved for the five elastomers results exhibiting ν(t) increasing with temperature and time from about 0.3 (for short-term loading) to reach and stabilize at about 0.48 (for long-term loading).</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14091837</identifier><identifier>PMID: 35567004</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Butadiene ; Creep tests ; Deformation ; Digital imaging ; Elastomers ; Engineering ; Laplace transforms ; Light ; Measurement techniques ; Mechanical properties ; Moire interferometry ; Neoprene ; Nitrile rubber ; Poisson's ratio ; Propylene ; Rubber ; Silicone rubber ; Simulation ; Strain gauges ; Viscoelasticity</subject><ispartof>Polymers, 2022-04, Vol.14 (9), p.1837</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-2c3e2bd1f3f3404502ba2ff8fc71e03da6eb792a7e8e8c37d1d65262d586f143</citedby><cites>FETCH-LOGICAL-c415t-2c3e2bd1f3f3404502ba2ff8fc71e03da6eb792a7e8e8c37d1d65262d586f143</cites><orcidid>0000-0002-8812-7190 ; 0000-0002-5008-5888 ; 0000-0003-3347-6438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099800/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099800/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35567004$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sotomayor-Del-Moral, Jonathan A</creatorcontrib><creatorcontrib>Pascual-Francisco, Juan B</creatorcontrib><creatorcontrib>Susarrey-Huerta, Orlando</creatorcontrib><creatorcontrib>Resendiz-Calderon, Cesar D</creatorcontrib><creatorcontrib>Gallardo-Hernández, Ezequiel A</creatorcontrib><creatorcontrib>Farfan-Cabrera, Leonardo I</creatorcontrib><title>Characterization of Viscoelastic Poisson's Ratio of Engineering Elastomers via DIC-Based Creep Testing</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>New data of creep and viscoelastic Poisson's ratio, ν(t), of five engineering elastomers (Ethylene Propylene-Diene Monomer, Flouroelastomer (Viton ), nitrile butadiene rubber, silicone rubber and neoprene/chloroprene rubber) at different stress (200, 400 and 600 kPa) and temperature (25, 50 and 80 °C) are presented. The ν(t) was characterized through an experimental methodological approach based on creep testing (30 min) and strain (axial and transverse) measurements by digital image correlation. Initially, creep behavior in axial and transverse directions was characterized for each elastomer and condition, and then each creep curve was fitted to a four-element creep model to obtain the corresponding functions. The obtained functions were used to estimate ν(t) for prolonged times (300 h) through a convolution equation. Overall, the characterization was achieved for the five elastomers results exhibiting ν(t) increasing with temperature and time from about 0.3 (for short-term loading) to reach and stabilize at about 0.48 (for long-term loading).</description><subject>Butadiene</subject><subject>Creep tests</subject><subject>Deformation</subject><subject>Digital imaging</subject><subject>Elastomers</subject><subject>Engineering</subject><subject>Laplace transforms</subject><subject>Light</subject><subject>Measurement techniques</subject><subject>Mechanical properties</subject><subject>Moire interferometry</subject><subject>Neoprene</subject><subject>Nitrile rubber</subject><subject>Poisson's ratio</subject><subject>Propylene</subject><subject>Rubber</subject><subject>Silicone rubber</subject><subject>Simulation</subject><subject>Strain gauges</subject><subject>Viscoelasticity</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc9LHDEUx4NYuqIee5WAB71MzY-ZZOYi1Om2FQRLWXoN2czLbmQm2Sazgv71zbh20ebyEt7nffm-fBH6RMlnzhtytQn900BL0tCaywN0xIjkRckFOXxzn6HTlB5IPmUlBJUf0YxXlZD5fYRsu9ZRmxGie9ajCx4Hi3-7ZAL0Oo3O4J_BpRT8RcK_JmDqz_3KecgjfoXnExYGiAk_Oo2_3rbFjU7Q4TYCbPACsohfnaAPVvcJTl_rMVp8my_aH8Xd_ffb9stdYUpajQUzHNiyo5ZbXma7hC01s7a2RlIgvNMClrJhWkINteGyo52omGBdVQtLS36Mrneym-1ygM6AH6Pu1Sa6QccnFbRT7zverdUqPKqGNE1NSBa4fBWI4c82e1dD_gvoe-0hbJNiQpQ1oeIFPf8PfQjb6PN2E8UpIbKmmSp2lIkhpQh2b4YSNWWo3mWY-bO3G-zpf4nxv-Y8mRs</recordid><startdate>20220429</startdate><enddate>20220429</enddate><creator>Sotomayor-Del-Moral, Jonathan A</creator><creator>Pascual-Francisco, Juan B</creator><creator>Susarrey-Huerta, Orlando</creator><creator>Resendiz-Calderon, Cesar D</creator><creator>Gallardo-Hernández, Ezequiel A</creator><creator>Farfan-Cabrera, Leonardo I</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8812-7190</orcidid><orcidid>https://orcid.org/0000-0002-5008-5888</orcidid><orcidid>https://orcid.org/0000-0003-3347-6438</orcidid></search><sort><creationdate>20220429</creationdate><title>Characterization of Viscoelastic Poisson's Ratio of Engineering Elastomers via DIC-Based Creep Testing</title><author>Sotomayor-Del-Moral, Jonathan A ; Pascual-Francisco, Juan B ; Susarrey-Huerta, Orlando ; Resendiz-Calderon, Cesar D ; Gallardo-Hernández, Ezequiel A ; Farfan-Cabrera, Leonardo I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-2c3e2bd1f3f3404502ba2ff8fc71e03da6eb792a7e8e8c37d1d65262d586f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Butadiene</topic><topic>Creep tests</topic><topic>Deformation</topic><topic>Digital imaging</topic><topic>Elastomers</topic><topic>Engineering</topic><topic>Laplace transforms</topic><topic>Light</topic><topic>Measurement techniques</topic><topic>Mechanical properties</topic><topic>Moire interferometry</topic><topic>Neoprene</topic><topic>Nitrile rubber</topic><topic>Poisson's ratio</topic><topic>Propylene</topic><topic>Rubber</topic><topic>Silicone rubber</topic><topic>Simulation</topic><topic>Strain gauges</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sotomayor-Del-Moral, Jonathan A</creatorcontrib><creatorcontrib>Pascual-Francisco, Juan B</creatorcontrib><creatorcontrib>Susarrey-Huerta, Orlando</creatorcontrib><creatorcontrib>Resendiz-Calderon, Cesar D</creatorcontrib><creatorcontrib>Gallardo-Hernández, Ezequiel A</creatorcontrib><creatorcontrib>Farfan-Cabrera, Leonardo I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sotomayor-Del-Moral, Jonathan A</au><au>Pascual-Francisco, Juan B</au><au>Susarrey-Huerta, Orlando</au><au>Resendiz-Calderon, Cesar D</au><au>Gallardo-Hernández, Ezequiel A</au><au>Farfan-Cabrera, Leonardo I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Viscoelastic Poisson's Ratio of Engineering Elastomers via DIC-Based Creep Testing</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2022-04-29</date><risdate>2022</risdate><volume>14</volume><issue>9</issue><spage>1837</spage><pages>1837-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>New data of creep and viscoelastic Poisson's ratio, ν(t), of five engineering elastomers (Ethylene Propylene-Diene Monomer, Flouroelastomer (Viton ), nitrile butadiene rubber, silicone rubber and neoprene/chloroprene rubber) at different stress (200, 400 and 600 kPa) and temperature (25, 50 and 80 °C) are presented. The ν(t) was characterized through an experimental methodological approach based on creep testing (30 min) and strain (axial and transverse) measurements by digital image correlation. Initially, creep behavior in axial and transverse directions was characterized for each elastomer and condition, and then each creep curve was fitted to a four-element creep model to obtain the corresponding functions. The obtained functions were used to estimate ν(t) for prolonged times (300 h) through a convolution equation. Overall, the characterization was achieved for the five elastomers results exhibiting ν(t) increasing with temperature and time from about 0.3 (for short-term loading) to reach and stabilize at about 0.48 (for long-term loading).</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35567004</pmid><doi>10.3390/polym14091837</doi><orcidid>https://orcid.org/0000-0002-8812-7190</orcidid><orcidid>https://orcid.org/0000-0002-5008-5888</orcidid><orcidid>https://orcid.org/0000-0003-3347-6438</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2022-04, Vol.14 (9), p.1837
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9099800
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Butadiene
Creep tests
Deformation
Digital imaging
Elastomers
Engineering
Laplace transforms
Light
Measurement techniques
Mechanical properties
Moire interferometry
Neoprene
Nitrile rubber
Poisson's ratio
Propylene
Rubber
Silicone rubber
Simulation
Strain gauges
Viscoelasticity
title Characterization of Viscoelastic Poisson's Ratio of Engineering Elastomers via DIC-Based Creep Testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Viscoelastic%20Poisson's%20Ratio%20of%20Engineering%20Elastomers%20via%20DIC-Based%20Creep%20Testing&rft.jtitle=Polymers&rft.au=Sotomayor-Del-Moral,%20Jonathan%20A&rft.date=2022-04-29&rft.volume=14&rft.issue=9&rft.spage=1837&rft.pages=1837-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14091837&rft_dat=%3Cproquest_pubme%3E2663100781%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663100781&rft_id=info:pmid/35567004&rfr_iscdi=true