Green Corrosion Inhibition on Carbon-Fibre-Reinforced Aluminium Laminate in NaCl Using Aerva Lanata Flower Extract

Aluminium-based fibre-metal laminates are lucrative candidates for aerospace manufacturers since they are lightweight and high-strength materials. The flower extract of aerva lanata was studied in order to prevent the effect of corrosion on the aluminium-based fibre-metal laminates (FMLs) in basic m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-04, Vol.14 (9), p.1700
Hauptverfasser: Hynes, Navasingh Rajesh Jesudoss, Vignesh, Nagarajan Jawahar, Barile, Claudia, Velu, Pitchumani Shenbaga, Baskaran, Thangagiri, Jappes, Jebas Thangiah Winowlin, Al-Khashman, Omar Ali, Brykov, Michail, Ene, Antoaneta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1700
container_title Polymers
container_volume 14
creator Hynes, Navasingh Rajesh Jesudoss
Vignesh, Nagarajan Jawahar
Barile, Claudia
Velu, Pitchumani Shenbaga
Baskaran, Thangagiri
Jappes, Jebas Thangiah Winowlin
Al-Khashman, Omar Ali
Brykov, Michail
Ene, Antoaneta
description Aluminium-based fibre-metal laminates are lucrative candidates for aerospace manufacturers since they are lightweight and high-strength materials. The flower extract of aerva lanata was studied in order to prevent the effect of corrosion on the aluminium-based fibre-metal laminates (FMLs) in basic media. It is considered an eco-friendly corrosion inhibitor using natural sources. Its flower species belong to the Amaranthaceae family. The results of the Fourier-transform infrared spectroscopy (FTIR) show that this flower extract includes organic compounds such as aromatic links, heteroatoms, and oxygen, which can be used as an organic corrosion inhibitor in an acidic environment. The effectiveness of the aerva-lanata flower behaviour in acting as an inhibitor of the corrosion process of FMLs was studied in 3.5% NaCl solution. The inhibition efficiency was calculated within a range of concentration of the inhibitor at room temperature, using the weight-loss method, potentiodynamic polarization measurements and electrochemical-impedance spectroscopy (EIS). The results indicate a characterization of about 87.02% in the presence of 600 ppm of inhibitor. The Tafel curve in the polarization experiments shows an inhibition efficiency of 88%. The inhibition mechanism was the absorption on the FML surface, and its absorption was observed with the aid of the Langmuir adsorption isotherm. This complex protective film occupies a larger surface area on the surface of the FML. Hence, by restricting the surface of the metallic layer from the corrosive medium, the charge and ion switch at the FML surface is reduced, thereby increasing the corrosion resistance.
doi_str_mv 10.3390/polym14091700
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9099620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663090160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-6575c8f3fc1572f4e7b03215655963676fd458237c02e2e0795eed5e1632706d3</originalsourceid><addsrcrecordid>eNpdkdFr3SAYxWVsrKXr416HsJe9ZPvUqPFlcAm9XeGywVifxZgvrSXRO5O0638_L-1KOxE8cH4c_TyEvGfwWQgDX_ZpvJ9YDYZpgFfkmIMWVS0UvH6mj8jpPN9AWbVUium35EjIohpljkk-z4iRtinnNIcU6UW8Dl1YDrLs1uUuxWobuozVTwxxSNljTzfjOoUY1onuXBFuQRoi_e7akV7OIV7RDeZbV8xiObod0x1mevZnyc4v78ibwY0znj6eJ-Rye_ar_VbtfpxftJtd5WtplkpJLX0ziMEzqflQo-5AcCaVlEYJpdXQ17LhQnvgyBG0kYi9RKYE16B6cUK-PuTu127C3mMs1492n8Pk8r1NLtiXTgzX9irdWgPGKA4l4NNjQE6_V5wXO4XZ4zi6iGmdLVeqboAZ1RT043_oTVpzLOMdKAEGmDoEVg-UL589ZxyeHsPAHgq1Lwot_IfnEzzR_-oTfwGjTJwc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663090160</pqid></control><display><type>article</type><title>Green Corrosion Inhibition on Carbon-Fibre-Reinforced Aluminium Laminate in NaCl Using Aerva Lanata Flower Extract</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Hynes, Navasingh Rajesh Jesudoss ; Vignesh, Nagarajan Jawahar ; Barile, Claudia ; Velu, Pitchumani Shenbaga ; Baskaran, Thangagiri ; Jappes, Jebas Thangiah Winowlin ; Al-Khashman, Omar Ali ; Brykov, Michail ; Ene, Antoaneta</creator><creatorcontrib>Hynes, Navasingh Rajesh Jesudoss ; Vignesh, Nagarajan Jawahar ; Barile, Claudia ; Velu, Pitchumani Shenbaga ; Baskaran, Thangagiri ; Jappes, Jebas Thangiah Winowlin ; Al-Khashman, Omar Ali ; Brykov, Michail ; Ene, Antoaneta</creatorcontrib><description>Aluminium-based fibre-metal laminates are lucrative candidates for aerospace manufacturers since they are lightweight and high-strength materials. The flower extract of aerva lanata was studied in order to prevent the effect of corrosion on the aluminium-based fibre-metal laminates (FMLs) in basic media. It is considered an eco-friendly corrosion inhibitor using natural sources. Its flower species belong to the Amaranthaceae family. The results of the Fourier-transform infrared spectroscopy (FTIR) show that this flower extract includes organic compounds such as aromatic links, heteroatoms, and oxygen, which can be used as an organic corrosion inhibitor in an acidic environment. The effectiveness of the aerva-lanata flower behaviour in acting as an inhibitor of the corrosion process of FMLs was studied in 3.5% NaCl solution. The inhibition efficiency was calculated within a range of concentration of the inhibitor at room temperature, using the weight-loss method, potentiodynamic polarization measurements and electrochemical-impedance spectroscopy (EIS). The results indicate a characterization of about 87.02% in the presence of 600 ppm of inhibitor. The Tafel curve in the polarization experiments shows an inhibition efficiency of 88%. The inhibition mechanism was the absorption on the FML surface, and its absorption was observed with the aid of the Langmuir adsorption isotherm. This complex protective film occupies a larger surface area on the surface of the FML. Hence, by restricting the surface of the metallic layer from the corrosive medium, the charge and ion switch at the FML surface is reduced, thereby increasing the corrosion resistance.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14091700</identifier><identifier>PMID: 35566869</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Absorption ; Aerospace industry ; Alloys ; Aluminum ; Aromatic compounds ; Carbon steel ; Corrosion effects ; Corrosion inhibitors ; Corrosion resistance ; Epoxy resins ; Fiber reinforced materials ; Flowers ; Fluorides ; Fourier transforms ; Friction welding ; Hydrophobic surfaces ; Infrared spectroscopy ; Investigations ; Ion charge ; Laminates ; Morphology ; Organic compounds ; Polarization ; Room temperature ; Scanning electron microscopy ; Shear strength ; Sodium chloride ; Surface chemistry</subject><ispartof>Polymers, 2022-04, Vol.14 (9), p.1700</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-6575c8f3fc1572f4e7b03215655963676fd458237c02e2e0795eed5e1632706d3</citedby><cites>FETCH-LOGICAL-c459t-6575c8f3fc1572f4e7b03215655963676fd458237c02e2e0795eed5e1632706d3</cites><orcidid>0000-0002-6976-0767 ; 0000-0002-8682-6078 ; 0000-0002-2679-473X ; 0000-0002-8158-1278 ; 0000-0001-7963-5671 ; 0000-0002-3282-2346 ; 0000-0002-9301-9776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099620/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099620/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35566869$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hynes, Navasingh Rajesh Jesudoss</creatorcontrib><creatorcontrib>Vignesh, Nagarajan Jawahar</creatorcontrib><creatorcontrib>Barile, Claudia</creatorcontrib><creatorcontrib>Velu, Pitchumani Shenbaga</creatorcontrib><creatorcontrib>Baskaran, Thangagiri</creatorcontrib><creatorcontrib>Jappes, Jebas Thangiah Winowlin</creatorcontrib><creatorcontrib>Al-Khashman, Omar Ali</creatorcontrib><creatorcontrib>Brykov, Michail</creatorcontrib><creatorcontrib>Ene, Antoaneta</creatorcontrib><title>Green Corrosion Inhibition on Carbon-Fibre-Reinforced Aluminium Laminate in NaCl Using Aerva Lanata Flower Extract</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Aluminium-based fibre-metal laminates are lucrative candidates for aerospace manufacturers since they are lightweight and high-strength materials. The flower extract of aerva lanata was studied in order to prevent the effect of corrosion on the aluminium-based fibre-metal laminates (FMLs) in basic media. It is considered an eco-friendly corrosion inhibitor using natural sources. Its flower species belong to the Amaranthaceae family. The results of the Fourier-transform infrared spectroscopy (FTIR) show that this flower extract includes organic compounds such as aromatic links, heteroatoms, and oxygen, which can be used as an organic corrosion inhibitor in an acidic environment. The effectiveness of the aerva-lanata flower behaviour in acting as an inhibitor of the corrosion process of FMLs was studied in 3.5% NaCl solution. The inhibition efficiency was calculated within a range of concentration of the inhibitor at room temperature, using the weight-loss method, potentiodynamic polarization measurements and electrochemical-impedance spectroscopy (EIS). The results indicate a characterization of about 87.02% in the presence of 600 ppm of inhibitor. The Tafel curve in the polarization experiments shows an inhibition efficiency of 88%. The inhibition mechanism was the absorption on the FML surface, and its absorption was observed with the aid of the Langmuir adsorption isotherm. This complex protective film occupies a larger surface area on the surface of the FML. Hence, by restricting the surface of the metallic layer from the corrosive medium, the charge and ion switch at the FML surface is reduced, thereby increasing the corrosion resistance.</description><subject>Absorption</subject><subject>Aerospace industry</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Aromatic compounds</subject><subject>Carbon steel</subject><subject>Corrosion effects</subject><subject>Corrosion inhibitors</subject><subject>Corrosion resistance</subject><subject>Epoxy resins</subject><subject>Fiber reinforced materials</subject><subject>Flowers</subject><subject>Fluorides</subject><subject>Fourier transforms</subject><subject>Friction welding</subject><subject>Hydrophobic surfaces</subject><subject>Infrared spectroscopy</subject><subject>Investigations</subject><subject>Ion charge</subject><subject>Laminates</subject><subject>Morphology</subject><subject>Organic compounds</subject><subject>Polarization</subject><subject>Room temperature</subject><subject>Scanning electron microscopy</subject><subject>Shear strength</subject><subject>Sodium chloride</subject><subject>Surface chemistry</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkdFr3SAYxWVsrKXr416HsJe9ZPvUqPFlcAm9XeGywVifxZgvrSXRO5O0638_L-1KOxE8cH4c_TyEvGfwWQgDX_ZpvJ9YDYZpgFfkmIMWVS0UvH6mj8jpPN9AWbVUium35EjIohpljkk-z4iRtinnNIcU6UW8Dl1YDrLs1uUuxWobuozVTwxxSNljTzfjOoUY1onuXBFuQRoi_e7akV7OIV7RDeZbV8xiObod0x1mevZnyc4v78ibwY0znj6eJ-Rye_ar_VbtfpxftJtd5WtplkpJLX0ziMEzqflQo-5AcCaVlEYJpdXQ17LhQnvgyBG0kYi9RKYE16B6cUK-PuTu127C3mMs1492n8Pk8r1NLtiXTgzX9irdWgPGKA4l4NNjQE6_V5wXO4XZ4zi6iGmdLVeqboAZ1RT043_oTVpzLOMdKAEGmDoEVg-UL589ZxyeHsPAHgq1Lwot_IfnEzzR_-oTfwGjTJwc</recordid><startdate>20220421</startdate><enddate>20220421</enddate><creator>Hynes, Navasingh Rajesh Jesudoss</creator><creator>Vignesh, Nagarajan Jawahar</creator><creator>Barile, Claudia</creator><creator>Velu, Pitchumani Shenbaga</creator><creator>Baskaran, Thangagiri</creator><creator>Jappes, Jebas Thangiah Winowlin</creator><creator>Al-Khashman, Omar Ali</creator><creator>Brykov, Michail</creator><creator>Ene, Antoaneta</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6976-0767</orcidid><orcidid>https://orcid.org/0000-0002-8682-6078</orcidid><orcidid>https://orcid.org/0000-0002-2679-473X</orcidid><orcidid>https://orcid.org/0000-0002-8158-1278</orcidid><orcidid>https://orcid.org/0000-0001-7963-5671</orcidid><orcidid>https://orcid.org/0000-0002-3282-2346</orcidid><orcidid>https://orcid.org/0000-0002-9301-9776</orcidid></search><sort><creationdate>20220421</creationdate><title>Green Corrosion Inhibition on Carbon-Fibre-Reinforced Aluminium Laminate in NaCl Using Aerva Lanata Flower Extract</title><author>Hynes, Navasingh Rajesh Jesudoss ; Vignesh, Nagarajan Jawahar ; Barile, Claudia ; Velu, Pitchumani Shenbaga ; Baskaran, Thangagiri ; Jappes, Jebas Thangiah Winowlin ; Al-Khashman, Omar Ali ; Brykov, Michail ; Ene, Antoaneta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-6575c8f3fc1572f4e7b03215655963676fd458237c02e2e0795eed5e1632706d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption</topic><topic>Aerospace industry</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Aromatic compounds</topic><topic>Carbon steel</topic><topic>Corrosion effects</topic><topic>Corrosion inhibitors</topic><topic>Corrosion resistance</topic><topic>Epoxy resins</topic><topic>Fiber reinforced materials</topic><topic>Flowers</topic><topic>Fluorides</topic><topic>Fourier transforms</topic><topic>Friction welding</topic><topic>Hydrophobic surfaces</topic><topic>Infrared spectroscopy</topic><topic>Investigations</topic><topic>Ion charge</topic><topic>Laminates</topic><topic>Morphology</topic><topic>Organic compounds</topic><topic>Polarization</topic><topic>Room temperature</topic><topic>Scanning electron microscopy</topic><topic>Shear strength</topic><topic>Sodium chloride</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hynes, Navasingh Rajesh Jesudoss</creatorcontrib><creatorcontrib>Vignesh, Nagarajan Jawahar</creatorcontrib><creatorcontrib>Barile, Claudia</creatorcontrib><creatorcontrib>Velu, Pitchumani Shenbaga</creatorcontrib><creatorcontrib>Baskaran, Thangagiri</creatorcontrib><creatorcontrib>Jappes, Jebas Thangiah Winowlin</creatorcontrib><creatorcontrib>Al-Khashman, Omar Ali</creatorcontrib><creatorcontrib>Brykov, Michail</creatorcontrib><creatorcontrib>Ene, Antoaneta</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hynes, Navasingh Rajesh Jesudoss</au><au>Vignesh, Nagarajan Jawahar</au><au>Barile, Claudia</au><au>Velu, Pitchumani Shenbaga</au><au>Baskaran, Thangagiri</au><au>Jappes, Jebas Thangiah Winowlin</au><au>Al-Khashman, Omar Ali</au><au>Brykov, Michail</au><au>Ene, Antoaneta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green Corrosion Inhibition on Carbon-Fibre-Reinforced Aluminium Laminate in NaCl Using Aerva Lanata Flower Extract</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2022-04-21</date><risdate>2022</risdate><volume>14</volume><issue>9</issue><spage>1700</spage><pages>1700-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Aluminium-based fibre-metal laminates are lucrative candidates for aerospace manufacturers since they are lightweight and high-strength materials. The flower extract of aerva lanata was studied in order to prevent the effect of corrosion on the aluminium-based fibre-metal laminates (FMLs) in basic media. It is considered an eco-friendly corrosion inhibitor using natural sources. Its flower species belong to the Amaranthaceae family. The results of the Fourier-transform infrared spectroscopy (FTIR) show that this flower extract includes organic compounds such as aromatic links, heteroatoms, and oxygen, which can be used as an organic corrosion inhibitor in an acidic environment. The effectiveness of the aerva-lanata flower behaviour in acting as an inhibitor of the corrosion process of FMLs was studied in 3.5% NaCl solution. The inhibition efficiency was calculated within a range of concentration of the inhibitor at room temperature, using the weight-loss method, potentiodynamic polarization measurements and electrochemical-impedance spectroscopy (EIS). The results indicate a characterization of about 87.02% in the presence of 600 ppm of inhibitor. The Tafel curve in the polarization experiments shows an inhibition efficiency of 88%. The inhibition mechanism was the absorption on the FML surface, and its absorption was observed with the aid of the Langmuir adsorption isotherm. This complex protective film occupies a larger surface area on the surface of the FML. Hence, by restricting the surface of the metallic layer from the corrosive medium, the charge and ion switch at the FML surface is reduced, thereby increasing the corrosion resistance.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35566869</pmid><doi>10.3390/polym14091700</doi><orcidid>https://orcid.org/0000-0002-6976-0767</orcidid><orcidid>https://orcid.org/0000-0002-8682-6078</orcidid><orcidid>https://orcid.org/0000-0002-2679-473X</orcidid><orcidid>https://orcid.org/0000-0002-8158-1278</orcidid><orcidid>https://orcid.org/0000-0001-7963-5671</orcidid><orcidid>https://orcid.org/0000-0002-3282-2346</orcidid><orcidid>https://orcid.org/0000-0002-9301-9776</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2022-04, Vol.14 (9), p.1700
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9099620
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Absorption
Aerospace industry
Alloys
Aluminum
Aromatic compounds
Carbon steel
Corrosion effects
Corrosion inhibitors
Corrosion resistance
Epoxy resins
Fiber reinforced materials
Flowers
Fluorides
Fourier transforms
Friction welding
Hydrophobic surfaces
Infrared spectroscopy
Investigations
Ion charge
Laminates
Morphology
Organic compounds
Polarization
Room temperature
Scanning electron microscopy
Shear strength
Sodium chloride
Surface chemistry
title Green Corrosion Inhibition on Carbon-Fibre-Reinforced Aluminium Laminate in NaCl Using Aerva Lanata Flower Extract
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20Corrosion%20Inhibition%20on%20Carbon-Fibre-Reinforced%20Aluminium%20Laminate%20in%20NaCl%20Using%20Aerva%20Lanata%20Flower%20Extract&rft.jtitle=Polymers&rft.au=Hynes,%20Navasingh%20Rajesh%20Jesudoss&rft.date=2022-04-21&rft.volume=14&rft.issue=9&rft.spage=1700&rft.pages=1700-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14091700&rft_dat=%3Cproquest_pubme%3E2663090160%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663090160&rft_id=info:pmid/35566869&rfr_iscdi=true