Properties of the epileptiform activity in the cingulate cortex of a mouse model of LIS1 dysfunction

Dysfunction of the LIS1 gene causes lissencephaly, a drastic neurological disorder characterized by a deep disruption of the cortical structure. We aim to uncover alterations of the cortical neuronal networks related with the propagation of epileptiform activity in the Lis1/sLis1 mouse, a model lack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain Structure and Function 2022-06, Vol.227 (5), p.1599-1614
Hauptverfasser: Domínguez-Sala, E., Andreu-Cervera, A., Martín-Climent, P., Murcia-Ramón, R., Martínez, S., Geijo-Barrientos, Emilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1614
container_issue 5
container_start_page 1599
container_title Brain Structure and Function
container_volume 227
creator Domínguez-Sala, E.
Andreu-Cervera, A.
Martín-Climent, P.
Murcia-Ramón, R.
Martínez, S.
Geijo-Barrientos, Emilio
description Dysfunction of the LIS1 gene causes lissencephaly, a drastic neurological disorder characterized by a deep disruption of the cortical structure. We aim to uncover alterations of the cortical neuronal networks related with the propagation of epileptiform activity in the Lis1/sLis1 mouse, a model lacking the LisH domain in heterozygosis. We did extracellular field-potential and intracellular recordings in brain slices of the anterior cingulate cortex (ACC) or the retrosplenial cortex (RSC) to study epileptiform activity evoked in the presence of bicuculline (10 µM), a blocker of GABA A receptors. The sensitivity to bicuculline of the generation of epileptiform discharges was similar in wild type (WT) and Lis1/sLis1 cortex (EC 50 1.99 and 2.24 µM, respectively). In the Lis1/sLis1 cortex, we observed a decreased frequency of the oscillatory post-discharges of the epileptiform events; also, the propagation of epileptiform events along layer 2/3 was slower in the Lis1/sLis1 cortex (WT 47.69 ± 2.16 mm/s, n  = 25; Lis1/sLis1 37.34 ± 2.43 mm/s, n  = 15; p  = 0.004). The intrinsic electrophysiological properties of layer 2/3 pyramidal neurons were similar in WT and Lis1/sLis1 cortex, but the frequency of the spontaneous EPSCs was lower and their peak amplitude higher in Lis1/sLis1 pyramidal neurons. Finally, the propagation of epileptiform activity was differently affected by AMPA receptor blockers: CNQX had a larger effect in both ACC and RSC while GYKI53655 had a larger effect only in the ACC in the WT and Lis1/sLis1 cortex. All these changes indicate that the dysfunction of the LIS1 gene causes abnormalities in the properties of epileptiform discharges and in their propagation along the layer 2/3 in the anterior cingulate cortex and in the restrosplenial cortex.
doi_str_mv 10.1007/s00429-022-02458-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9098610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624653320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-d8affd1e17aed7c8b458fbc6ac2b9963c02b8c2235c31e53f676665157bb3043</originalsourceid><addsrcrecordid>eNp9UU1P3DAUtKqiQpf-gR6qSL1wSfFH7CQXpAqVFmklkOBuOc7zYpTYwXYQ--_rsLD9OHCw_eQ3M_a8Qegzwd8IxvVpxLiibYkpzaviTUneoSPSCFZSIcj7fc3ZIfoY4z3GvG1I-wEdMk4wa3h7hPrr4CcIyUIsvCnSHRQw2QGmZI0PY6F0so82bQvrnpvaus08qJQrHxI8LSRVjH6OkPcehuVifXlDin4bzewy3btjdGDUEOHTy7lCtxc_bs9_leurn5fn39elruoqlX2jjOkJkFpBX-umy55Mp4XStGtbwTSmXaMpZVwzApwZUQshOOF11zFcsRU628lOczdCr8GloAY5BTuqsJVeWflvx9k7ufGPssVtI_JEVujkRSD4hxlikqONGoZBOcgOJRW0ytNkdIF-_Q967-fgsruMEows06UZRXcoHXyMAcz-MwTLJUO5y1DmDOVzhpJk0pe_bewpr6FlANsBYm65DYQ_b78h-xsGCKiq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663138592</pqid></control><display><type>article</type><title>Properties of the epileptiform activity in the cingulate cortex of a mouse model of LIS1 dysfunction</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Domínguez-Sala, E. ; Andreu-Cervera, A. ; Martín-Climent, P. ; Murcia-Ramón, R. ; Martínez, S. ; Geijo-Barrientos, Emilio</creator><creatorcontrib>Domínguez-Sala, E. ; Andreu-Cervera, A. ; Martín-Climent, P. ; Murcia-Ramón, R. ; Martínez, S. ; Geijo-Barrientos, Emilio</creatorcontrib><description>Dysfunction of the LIS1 gene causes lissencephaly, a drastic neurological disorder characterized by a deep disruption of the cortical structure. We aim to uncover alterations of the cortical neuronal networks related with the propagation of epileptiform activity in the Lis1/sLis1 mouse, a model lacking the LisH domain in heterozygosis. We did extracellular field-potential and intracellular recordings in brain slices of the anterior cingulate cortex (ACC) or the retrosplenial cortex (RSC) to study epileptiform activity evoked in the presence of bicuculline (10 µM), a blocker of GABA A receptors. The sensitivity to bicuculline of the generation of epileptiform discharges was similar in wild type (WT) and Lis1/sLis1 cortex (EC 50 1.99 and 2.24 µM, respectively). In the Lis1/sLis1 cortex, we observed a decreased frequency of the oscillatory post-discharges of the epileptiform events; also, the propagation of epileptiform events along layer 2/3 was slower in the Lis1/sLis1 cortex (WT 47.69 ± 2.16 mm/s, n  = 25; Lis1/sLis1 37.34 ± 2.43 mm/s, n  = 15; p  = 0.004). The intrinsic electrophysiological properties of layer 2/3 pyramidal neurons were similar in WT and Lis1/sLis1 cortex, but the frequency of the spontaneous EPSCs was lower and their peak amplitude higher in Lis1/sLis1 pyramidal neurons. Finally, the propagation of epileptiform activity was differently affected by AMPA receptor blockers: CNQX had a larger effect in both ACC and RSC while GYKI53655 had a larger effect only in the ACC in the WT and Lis1/sLis1 cortex. All these changes indicate that the dysfunction of the LIS1 gene causes abnormalities in the properties of epileptiform discharges and in their propagation along the layer 2/3 in the anterior cingulate cortex and in the restrosplenial cortex.</description><identifier>ISSN: 1863-2653</identifier><identifier>EISSN: 1863-2661</identifier><identifier>EISSN: 0340-2061</identifier><identifier>DOI: 10.1007/s00429-022-02458-1</identifier><identifier>PMID: 35103859</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animal memory ; Animals ; Bicuculline ; Bicuculline - pharmacology ; Biomedical and Life Sciences ; Biomedicine ; Brain slice preparation ; Cell Biology ; Cortex (cingulate) ; Disease Models, Animal ; Epilepsy ; Excitatory postsynaptic potentials ; Firing pattern ; Gyrus Cinguli - physiology ; LIS1 protein ; Lissencephaly ; Mice ; Neural networks ; Neurology ; Neurosciences ; Original ; Original Article ; Propagation ; Pyramidal cells ; Pyramidal Cells - physiology ; Receptors, AMPA - physiology ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors ; γ-Aminobutyric acid A receptors</subject><ispartof>Brain Structure and Function, 2022-06, Vol.227 (5), p.1599-1614</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-d8affd1e17aed7c8b458fbc6ac2b9963c02b8c2235c31e53f676665157bb3043</citedby><cites>FETCH-LOGICAL-c474t-d8affd1e17aed7c8b458fbc6ac2b9963c02b8c2235c31e53f676665157bb3043</cites><orcidid>0000-0001-8655-0967 ; 0000-0001-8883-2757 ; 0000-0002-8436-9993 ; 0000-0002-9320-4103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00429-022-02458-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00429-022-02458-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35103859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Domínguez-Sala, E.</creatorcontrib><creatorcontrib>Andreu-Cervera, A.</creatorcontrib><creatorcontrib>Martín-Climent, P.</creatorcontrib><creatorcontrib>Murcia-Ramón, R.</creatorcontrib><creatorcontrib>Martínez, S.</creatorcontrib><creatorcontrib>Geijo-Barrientos, Emilio</creatorcontrib><title>Properties of the epileptiform activity in the cingulate cortex of a mouse model of LIS1 dysfunction</title><title>Brain Structure and Function</title><addtitle>Brain Struct Funct</addtitle><addtitle>Brain Struct Funct</addtitle><description>Dysfunction of the LIS1 gene causes lissencephaly, a drastic neurological disorder characterized by a deep disruption of the cortical structure. We aim to uncover alterations of the cortical neuronal networks related with the propagation of epileptiform activity in the Lis1/sLis1 mouse, a model lacking the LisH domain in heterozygosis. We did extracellular field-potential and intracellular recordings in brain slices of the anterior cingulate cortex (ACC) or the retrosplenial cortex (RSC) to study epileptiform activity evoked in the presence of bicuculline (10 µM), a blocker of GABA A receptors. The sensitivity to bicuculline of the generation of epileptiform discharges was similar in wild type (WT) and Lis1/sLis1 cortex (EC 50 1.99 and 2.24 µM, respectively). In the Lis1/sLis1 cortex, we observed a decreased frequency of the oscillatory post-discharges of the epileptiform events; also, the propagation of epileptiform events along layer 2/3 was slower in the Lis1/sLis1 cortex (WT 47.69 ± 2.16 mm/s, n  = 25; Lis1/sLis1 37.34 ± 2.43 mm/s, n  = 15; p  = 0.004). The intrinsic electrophysiological properties of layer 2/3 pyramidal neurons were similar in WT and Lis1/sLis1 cortex, but the frequency of the spontaneous EPSCs was lower and their peak amplitude higher in Lis1/sLis1 pyramidal neurons. Finally, the propagation of epileptiform activity was differently affected by AMPA receptor blockers: CNQX had a larger effect in both ACC and RSC while GYKI53655 had a larger effect only in the ACC in the WT and Lis1/sLis1 cortex. All these changes indicate that the dysfunction of the LIS1 gene causes abnormalities in the properties of epileptiform discharges and in their propagation along the layer 2/3 in the anterior cingulate cortex and in the restrosplenial cortex.</description><subject>Animal memory</subject><subject>Animals</subject><subject>Bicuculline</subject><subject>Bicuculline - pharmacology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain slice preparation</subject><subject>Cell Biology</subject><subject>Cortex (cingulate)</subject><subject>Disease Models, Animal</subject><subject>Epilepsy</subject><subject>Excitatory postsynaptic potentials</subject><subject>Firing pattern</subject><subject>Gyrus Cinguli - physiology</subject><subject>LIS1 protein</subject><subject>Lissencephaly</subject><subject>Mice</subject><subject>Neural networks</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Original</subject><subject>Original Article</subject><subject>Propagation</subject><subject>Pyramidal cells</subject><subject>Pyramidal Cells - physiology</subject><subject>Receptors, AMPA - physiology</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><subject>γ-Aminobutyric acid A receptors</subject><issn>1863-2653</issn><issn>1863-2661</issn><issn>0340-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1P3DAUtKqiQpf-gR6qSL1wSfFH7CQXpAqVFmklkOBuOc7zYpTYwXYQ--_rsLD9OHCw_eQ3M_a8Qegzwd8IxvVpxLiibYkpzaviTUneoSPSCFZSIcj7fc3ZIfoY4z3GvG1I-wEdMk4wa3h7hPrr4CcIyUIsvCnSHRQw2QGmZI0PY6F0so82bQvrnpvaus08qJQrHxI8LSRVjH6OkPcehuVifXlDin4bzewy3btjdGDUEOHTy7lCtxc_bs9_leurn5fn39elruoqlX2jjOkJkFpBX-umy55Mp4XStGtbwTSmXaMpZVwzApwZUQshOOF11zFcsRU628lOczdCr8GloAY5BTuqsJVeWflvx9k7ufGPssVtI_JEVujkRSD4hxlikqONGoZBOcgOJRW0ytNkdIF-_Q967-fgsruMEows06UZRXcoHXyMAcz-MwTLJUO5y1DmDOVzhpJk0pe_bewpr6FlANsBYm65DYQ_b78h-xsGCKiq</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Domínguez-Sala, E.</creator><creator>Andreu-Cervera, A.</creator><creator>Martín-Climent, P.</creator><creator>Murcia-Ramón, R.</creator><creator>Martínez, S.</creator><creator>Geijo-Barrientos, Emilio</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8655-0967</orcidid><orcidid>https://orcid.org/0000-0001-8883-2757</orcidid><orcidid>https://orcid.org/0000-0002-8436-9993</orcidid><orcidid>https://orcid.org/0000-0002-9320-4103</orcidid></search><sort><creationdate>20220601</creationdate><title>Properties of the epileptiform activity in the cingulate cortex of a mouse model of LIS1 dysfunction</title><author>Domínguez-Sala, E. ; Andreu-Cervera, A. ; Martín-Climent, P. ; Murcia-Ramón, R. ; Martínez, S. ; Geijo-Barrientos, Emilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-d8affd1e17aed7c8b458fbc6ac2b9963c02b8c2235c31e53f676665157bb3043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal memory</topic><topic>Animals</topic><topic>Bicuculline</topic><topic>Bicuculline - pharmacology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain slice preparation</topic><topic>Cell Biology</topic><topic>Cortex (cingulate)</topic><topic>Disease Models, Animal</topic><topic>Epilepsy</topic><topic>Excitatory postsynaptic potentials</topic><topic>Firing pattern</topic><topic>Gyrus Cinguli - physiology</topic><topic>LIS1 protein</topic><topic>Lissencephaly</topic><topic>Mice</topic><topic>Neural networks</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Original</topic><topic>Original Article</topic><topic>Propagation</topic><topic>Pyramidal cells</topic><topic>Pyramidal Cells - physiology</topic><topic>Receptors, AMPA - physiology</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</topic><topic>γ-Aminobutyric acid A receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Domínguez-Sala, E.</creatorcontrib><creatorcontrib>Andreu-Cervera, A.</creatorcontrib><creatorcontrib>Martín-Climent, P.</creatorcontrib><creatorcontrib>Murcia-Ramón, R.</creatorcontrib><creatorcontrib>Martínez, S.</creatorcontrib><creatorcontrib>Geijo-Barrientos, Emilio</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain Structure and Function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Domínguez-Sala, E.</au><au>Andreu-Cervera, A.</au><au>Martín-Climent, P.</au><au>Murcia-Ramón, R.</au><au>Martínez, S.</au><au>Geijo-Barrientos, Emilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of the epileptiform activity in the cingulate cortex of a mouse model of LIS1 dysfunction</atitle><jtitle>Brain Structure and Function</jtitle><stitle>Brain Struct Funct</stitle><addtitle>Brain Struct Funct</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>227</volume><issue>5</issue><spage>1599</spage><epage>1614</epage><pages>1599-1614</pages><issn>1863-2653</issn><eissn>1863-2661</eissn><eissn>0340-2061</eissn><abstract>Dysfunction of the LIS1 gene causes lissencephaly, a drastic neurological disorder characterized by a deep disruption of the cortical structure. We aim to uncover alterations of the cortical neuronal networks related with the propagation of epileptiform activity in the Lis1/sLis1 mouse, a model lacking the LisH domain in heterozygosis. We did extracellular field-potential and intracellular recordings in brain slices of the anterior cingulate cortex (ACC) or the retrosplenial cortex (RSC) to study epileptiform activity evoked in the presence of bicuculline (10 µM), a blocker of GABA A receptors. The sensitivity to bicuculline of the generation of epileptiform discharges was similar in wild type (WT) and Lis1/sLis1 cortex (EC 50 1.99 and 2.24 µM, respectively). In the Lis1/sLis1 cortex, we observed a decreased frequency of the oscillatory post-discharges of the epileptiform events; also, the propagation of epileptiform events along layer 2/3 was slower in the Lis1/sLis1 cortex (WT 47.69 ± 2.16 mm/s, n  = 25; Lis1/sLis1 37.34 ± 2.43 mm/s, n  = 15; p  = 0.004). The intrinsic electrophysiological properties of layer 2/3 pyramidal neurons were similar in WT and Lis1/sLis1 cortex, but the frequency of the spontaneous EPSCs was lower and their peak amplitude higher in Lis1/sLis1 pyramidal neurons. Finally, the propagation of epileptiform activity was differently affected by AMPA receptor blockers: CNQX had a larger effect in both ACC and RSC while GYKI53655 had a larger effect only in the ACC in the WT and Lis1/sLis1 cortex. All these changes indicate that the dysfunction of the LIS1 gene causes abnormalities in the properties of epileptiform discharges and in their propagation along the layer 2/3 in the anterior cingulate cortex and in the restrosplenial cortex.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35103859</pmid><doi>10.1007/s00429-022-02458-1</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8655-0967</orcidid><orcidid>https://orcid.org/0000-0001-8883-2757</orcidid><orcidid>https://orcid.org/0000-0002-8436-9993</orcidid><orcidid>https://orcid.org/0000-0002-9320-4103</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1863-2653
ispartof Brain Structure and Function, 2022-06, Vol.227 (5), p.1599-1614
issn 1863-2653
1863-2661
0340-2061
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9098610
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animal memory
Animals
Bicuculline
Bicuculline - pharmacology
Biomedical and Life Sciences
Biomedicine
Brain slice preparation
Cell Biology
Cortex (cingulate)
Disease Models, Animal
Epilepsy
Excitatory postsynaptic potentials
Firing pattern
Gyrus Cinguli - physiology
LIS1 protein
Lissencephaly
Mice
Neural networks
Neurology
Neurosciences
Original
Original Article
Propagation
Pyramidal cells
Pyramidal Cells - physiology
Receptors, AMPA - physiology
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors
γ-Aminobutyric acid A receptors
title Properties of the epileptiform activity in the cingulate cortex of a mouse model of LIS1 dysfunction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A21%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20the%20epileptiform%20activity%20in%20the%20cingulate%20cortex%20of%20a%20mouse%20model%20of%20LIS1%20dysfunction&rft.jtitle=Brain%20Structure%20and%20Function&rft.au=Dom%C3%ADnguez-Sala,%20E.&rft.date=2022-06-01&rft.volume=227&rft.issue=5&rft.spage=1599&rft.epage=1614&rft.pages=1599-1614&rft.issn=1863-2653&rft.eissn=1863-2661&rft_id=info:doi/10.1007/s00429-022-02458-1&rft_dat=%3Cproquest_pubme%3E2624653320%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663138592&rft_id=info:pmid/35103859&rfr_iscdi=true