Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries
The chemical and electrochemical reactions at the positive electrode–electrolyte interface in Li-ion batteries are hugely influential on cycle life and safety. Ni-rich layered transition metal oxides exhibit higher interfacial reactivity than their lower Ni-content analogues, reacting via mechanisms...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-03, Vol.14 (11), p.13206-13222 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13222 |
---|---|
container_issue | 11 |
container_start_page | 13206 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | Dose, Wesley M. Temprano, Israel Allen, Jennifer P. Björklund, Erik O’Keefe, Christopher A. Li, Weiqun Mehdi, B. Layla Weatherup, Robert S. De Volder, Michael F. L. Grey, Clare P. |
description | The chemical and electrochemical reactions at the positive electrode–electrolyte interface in Li-ion batteries are hugely influential on cycle life and safety. Ni-rich layered transition metal oxides exhibit higher interfacial reactivity than their lower Ni-content analogues, reacting via mechanisms that are poorly understood. Here, we study the pivotal role of the electrolyte solvent, specifically cyclic ethylene carbonate (EC) and linear ethyl methyl carbonate (EMC), in determining the interfacial reactivity at charged LiNi0.33Mn0.33Co0.33O2 (NMC111) and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes by using both single-solvent model electrolytes and the mixed solvents used in commercial cells. While NMC111 exhibits similar parasitic currents with EC-containing and EC-free electrolytes during high voltage holds in NMC/Li4Ti5O12 (LTO) cells, this is not the case for NMC811. Online gas analysis reveals that the solvent-dependent reactivity for Ni-rich cathodes is related to the extent of lattice oxygen release and accompanying electrolyte decomposition, which is higher for EC-containing than EC-free electrolytes. Combined findings from electrochemical impedance spectroscopy (EIS), TEM, solution NMR, ICP, and XPS reveal that the electrolyte solvent has a profound impact on the degradation of the Ni-rich cathode and the electrolyte. Higher lattice oxygen release with EC-containing electrolytes is coupled with higher cathode interfacial impedance, a thicker oxygen-deficient rock-salt surface reconstruction layer, more electrolyte solvent and salt breakdown, and higher amounts of transition metal dissolution. These processes are suppressed in the EC-free electrolyte, highlighting the incompatibility between Ni-rich cathodes and conventional electrolyte solvents. Finally, new mechanistic insights into the chemical oxidation pathways of electrolyte solvents and, critically, the knock-on chemical and electrochemical reactions that further degrade the electrolyte and electrodes curtailing battery lifetime are provided. |
doi_str_mv | 10.1021/acsami.1c22812 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9098117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637580575</sourcerecordid><originalsourceid>FETCH-LOGICAL-a452t-bf582a6d37308a7dacb533d3473d02731729e60a96f3d31f33f02182660bd66b3</originalsourceid><addsrcrecordid>eNp1kc2LFDEQxYMo7rp69SjBkwg95qPTHxdBx1UHBoVFz6E6qZ7O0pOsSWZh_nuz9DjowVOK1K9eUu8R8pKzFWeCvwOTYO9W3AjRcfGIXPK-rqtOKPH4XNf1BXmW0i1jjRRMPSUXUgnV9aK9JOZ6RpNjmI8Z6Q2Cye7e5SOFTPOEdD1B3KGl31x148xE15CnYJFufMY4gkEK3tJPuItgIbvgqfN066pNqT5CLpDD9Jw8GWFO-OJ0XpGfn69_rL9W2-9fNusP2wpqJXI1jKoT0FjZStZBa8EMSkor61ZaJlrJW9Fjw6BvxnLLRynH4kAnmoYNtmkGeUXeL7p3h2GP1qDPEWZ9F90e4lEHcPrfjneT3oV73bO-47wtAq8XgZCy08m4jGYywftikeaF6bsH6M3plRh-HTBlvXfJ4DyDx3BIWjSyVR1TrSroakFNDClFHM9_4Uw_xKeX-PQpvjLw6u8NzvifvArwdgHKoL4Nh-iLof9T-w3ufKTF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637580575</pqid></control><display><type>article</type><title>Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries</title><source>ACS Publications</source><creator>Dose, Wesley M. ; Temprano, Israel ; Allen, Jennifer P. ; Björklund, Erik ; O’Keefe, Christopher A. ; Li, Weiqun ; Mehdi, B. Layla ; Weatherup, Robert S. ; De Volder, Michael F. L. ; Grey, Clare P.</creator><creatorcontrib>Dose, Wesley M. ; Temprano, Israel ; Allen, Jennifer P. ; Björklund, Erik ; O’Keefe, Christopher A. ; Li, Weiqun ; Mehdi, B. Layla ; Weatherup, Robert S. ; De Volder, Michael F. L. ; Grey, Clare P. ; Argonne National Laboratory (ANL), Argonne, IL (United States). Cell Analysis, Modeling and Prototyping (CAMP) Facility</creatorcontrib><description>The chemical and electrochemical reactions at the positive electrode–electrolyte interface in Li-ion batteries are hugely influential on cycle life and safety. Ni-rich layered transition metal oxides exhibit higher interfacial reactivity than their lower Ni-content analogues, reacting via mechanisms that are poorly understood. Here, we study the pivotal role of the electrolyte solvent, specifically cyclic ethylene carbonate (EC) and linear ethyl methyl carbonate (EMC), in determining the interfacial reactivity at charged LiNi0.33Mn0.33Co0.33O2 (NMC111) and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes by using both single-solvent model electrolytes and the mixed solvents used in commercial cells. While NMC111 exhibits similar parasitic currents with EC-containing and EC-free electrolytes during high voltage holds in NMC/Li4Ti5O12 (LTO) cells, this is not the case for NMC811. Online gas analysis reveals that the solvent-dependent reactivity for Ni-rich cathodes is related to the extent of lattice oxygen release and accompanying electrolyte decomposition, which is higher for EC-containing than EC-free electrolytes. Combined findings from electrochemical impedance spectroscopy (EIS), TEM, solution NMR, ICP, and XPS reveal that the electrolyte solvent has a profound impact on the degradation of the Ni-rich cathode and the electrolyte. Higher lattice oxygen release with EC-containing electrolytes is coupled with higher cathode interfacial impedance, a thicker oxygen-deficient rock-salt surface reconstruction layer, more electrolyte solvent and salt breakdown, and higher amounts of transition metal dissolution. These processes are suppressed in the EC-free electrolyte, highlighting the incompatibility between Ni-rich cathodes and conventional electrolyte solvents. Finally, new mechanistic insights into the chemical oxidation pathways of electrolyte solvents and, critically, the knock-on chemical and electrochemical reactions that further degrade the electrolyte and electrodes curtailing battery lifetime are provided.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c22812</identifier><identifier>PMID: 35258927</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>degradation ; electrolyte reactivity ; ENERGY STORAGE ; Energy, Environmental, and Catalysis Applications ; ethyl methyl carbonate ; ethylene carbonate ; lattice oxygen ; lithium-ion batteries ; Ni-rich cathode ; NMC</subject><ispartof>ACS applied materials & interfaces, 2022-03, Vol.14 (11), p.13206-13222</ispartof><rights>2022 American Chemical Society</rights><rights>2022 American Chemical Society 2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a452t-bf582a6d37308a7dacb533d3473d02731729e60a96f3d31f33f02182660bd66b3</citedby><cites>FETCH-LOGICAL-a452t-bf582a6d37308a7dacb533d3473d02731729e60a96f3d31f33f02182660bd66b3</cites><orcidid>0000-0003-3850-0505 ; 0000-0002-8281-9524 ; 0000-0002-3993-9045 ; 0000-0001-5572-192X ; 0000000338500505 ; 000000015572192X ; 0000000239939045 ; 0000000282819524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c22812$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c22812$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35258927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1981987$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dose, Wesley M.</creatorcontrib><creatorcontrib>Temprano, Israel</creatorcontrib><creatorcontrib>Allen, Jennifer P.</creatorcontrib><creatorcontrib>Björklund, Erik</creatorcontrib><creatorcontrib>O’Keefe, Christopher A.</creatorcontrib><creatorcontrib>Li, Weiqun</creatorcontrib><creatorcontrib>Mehdi, B. Layla</creatorcontrib><creatorcontrib>Weatherup, Robert S.</creatorcontrib><creatorcontrib>De Volder, Michael F. L.</creatorcontrib><creatorcontrib>Grey, Clare P.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Cell Analysis, Modeling and Prototyping (CAMP) Facility</creatorcontrib><title>Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The chemical and electrochemical reactions at the positive electrode–electrolyte interface in Li-ion batteries are hugely influential on cycle life and safety. Ni-rich layered transition metal oxides exhibit higher interfacial reactivity than their lower Ni-content analogues, reacting via mechanisms that are poorly understood. Here, we study the pivotal role of the electrolyte solvent, specifically cyclic ethylene carbonate (EC) and linear ethyl methyl carbonate (EMC), in determining the interfacial reactivity at charged LiNi0.33Mn0.33Co0.33O2 (NMC111) and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes by using both single-solvent model electrolytes and the mixed solvents used in commercial cells. While NMC111 exhibits similar parasitic currents with EC-containing and EC-free electrolytes during high voltage holds in NMC/Li4Ti5O12 (LTO) cells, this is not the case for NMC811. Online gas analysis reveals that the solvent-dependent reactivity for Ni-rich cathodes is related to the extent of lattice oxygen release and accompanying electrolyte decomposition, which is higher for EC-containing than EC-free electrolytes. Combined findings from electrochemical impedance spectroscopy (EIS), TEM, solution NMR, ICP, and XPS reveal that the electrolyte solvent has a profound impact on the degradation of the Ni-rich cathode and the electrolyte. Higher lattice oxygen release with EC-containing electrolytes is coupled with higher cathode interfacial impedance, a thicker oxygen-deficient rock-salt surface reconstruction layer, more electrolyte solvent and salt breakdown, and higher amounts of transition metal dissolution. These processes are suppressed in the EC-free electrolyte, highlighting the incompatibility between Ni-rich cathodes and conventional electrolyte solvents. Finally, new mechanistic insights into the chemical oxidation pathways of electrolyte solvents and, critically, the knock-on chemical and electrochemical reactions that further degrade the electrolyte and electrodes curtailing battery lifetime are provided.</description><subject>degradation</subject><subject>electrolyte reactivity</subject><subject>ENERGY STORAGE</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>ethyl methyl carbonate</subject><subject>ethylene carbonate</subject><subject>lattice oxygen</subject><subject>lithium-ion batteries</subject><subject>Ni-rich cathode</subject><subject>NMC</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kc2LFDEQxYMo7rp69SjBkwg95qPTHxdBx1UHBoVFz6E6qZ7O0pOsSWZh_nuz9DjowVOK1K9eUu8R8pKzFWeCvwOTYO9W3AjRcfGIXPK-rqtOKPH4XNf1BXmW0i1jjRRMPSUXUgnV9aK9JOZ6RpNjmI8Z6Q2Cye7e5SOFTPOEdD1B3KGl31x148xE15CnYJFufMY4gkEK3tJPuItgIbvgqfN066pNqT5CLpDD9Jw8GWFO-OJ0XpGfn69_rL9W2-9fNusP2wpqJXI1jKoT0FjZStZBa8EMSkor61ZaJlrJW9Fjw6BvxnLLRynH4kAnmoYNtmkGeUXeL7p3h2GP1qDPEWZ9F90e4lEHcPrfjneT3oV73bO-47wtAq8XgZCy08m4jGYywftikeaF6bsH6M3plRh-HTBlvXfJ4DyDx3BIWjSyVR1TrSroakFNDClFHM9_4Uw_xKeX-PQpvjLw6u8NzvifvArwdgHKoL4Nh-iLof9T-w3ufKTF</recordid><startdate>20220323</startdate><enddate>20220323</enddate><creator>Dose, Wesley M.</creator><creator>Temprano, Israel</creator><creator>Allen, Jennifer P.</creator><creator>Björklund, Erik</creator><creator>O’Keefe, Christopher A.</creator><creator>Li, Weiqun</creator><creator>Mehdi, B. Layla</creator><creator>Weatherup, Robert S.</creator><creator>De Volder, Michael F. L.</creator><creator>Grey, Clare P.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3850-0505</orcidid><orcidid>https://orcid.org/0000-0002-8281-9524</orcidid><orcidid>https://orcid.org/0000-0002-3993-9045</orcidid><orcidid>https://orcid.org/0000-0001-5572-192X</orcidid><orcidid>https://orcid.org/0000000338500505</orcidid><orcidid>https://orcid.org/000000015572192X</orcidid><orcidid>https://orcid.org/0000000239939045</orcidid><orcidid>https://orcid.org/0000000282819524</orcidid></search><sort><creationdate>20220323</creationdate><title>Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries</title><author>Dose, Wesley M. ; Temprano, Israel ; Allen, Jennifer P. ; Björklund, Erik ; O’Keefe, Christopher A. ; Li, Weiqun ; Mehdi, B. Layla ; Weatherup, Robert S. ; De Volder, Michael F. L. ; Grey, Clare P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a452t-bf582a6d37308a7dacb533d3473d02731729e60a96f3d31f33f02182660bd66b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>degradation</topic><topic>electrolyte reactivity</topic><topic>ENERGY STORAGE</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>ethyl methyl carbonate</topic><topic>ethylene carbonate</topic><topic>lattice oxygen</topic><topic>lithium-ion batteries</topic><topic>Ni-rich cathode</topic><topic>NMC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dose, Wesley M.</creatorcontrib><creatorcontrib>Temprano, Israel</creatorcontrib><creatorcontrib>Allen, Jennifer P.</creatorcontrib><creatorcontrib>Björklund, Erik</creatorcontrib><creatorcontrib>O’Keefe, Christopher A.</creatorcontrib><creatorcontrib>Li, Weiqun</creatorcontrib><creatorcontrib>Mehdi, B. Layla</creatorcontrib><creatorcontrib>Weatherup, Robert S.</creatorcontrib><creatorcontrib>De Volder, Michael F. L.</creatorcontrib><creatorcontrib>Grey, Clare P.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Cell Analysis, Modeling and Prototyping (CAMP) Facility</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dose, Wesley M.</au><au>Temprano, Israel</au><au>Allen, Jennifer P.</au><au>Björklund, Erik</au><au>O’Keefe, Christopher A.</au><au>Li, Weiqun</au><au>Mehdi, B. Layla</au><au>Weatherup, Robert S.</au><au>De Volder, Michael F. L.</au><au>Grey, Clare P.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Cell Analysis, Modeling and Prototyping (CAMP) Facility</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-03-23</date><risdate>2022</risdate><volume>14</volume><issue>11</issue><spage>13206</spage><epage>13222</epage><pages>13206-13222</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The chemical and electrochemical reactions at the positive electrode–electrolyte interface in Li-ion batteries are hugely influential on cycle life and safety. Ni-rich layered transition metal oxides exhibit higher interfacial reactivity than their lower Ni-content analogues, reacting via mechanisms that are poorly understood. Here, we study the pivotal role of the electrolyte solvent, specifically cyclic ethylene carbonate (EC) and linear ethyl methyl carbonate (EMC), in determining the interfacial reactivity at charged LiNi0.33Mn0.33Co0.33O2 (NMC111) and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes by using both single-solvent model electrolytes and the mixed solvents used in commercial cells. While NMC111 exhibits similar parasitic currents with EC-containing and EC-free electrolytes during high voltage holds in NMC/Li4Ti5O12 (LTO) cells, this is not the case for NMC811. Online gas analysis reveals that the solvent-dependent reactivity for Ni-rich cathodes is related to the extent of lattice oxygen release and accompanying electrolyte decomposition, which is higher for EC-containing than EC-free electrolytes. Combined findings from electrochemical impedance spectroscopy (EIS), TEM, solution NMR, ICP, and XPS reveal that the electrolyte solvent has a profound impact on the degradation of the Ni-rich cathode and the electrolyte. Higher lattice oxygen release with EC-containing electrolytes is coupled with higher cathode interfacial impedance, a thicker oxygen-deficient rock-salt surface reconstruction layer, more electrolyte solvent and salt breakdown, and higher amounts of transition metal dissolution. These processes are suppressed in the EC-free electrolyte, highlighting the incompatibility between Ni-rich cathodes and conventional electrolyte solvents. Finally, new mechanistic insights into the chemical oxidation pathways of electrolyte solvents and, critically, the knock-on chemical and electrochemical reactions that further degrade the electrolyte and electrodes curtailing battery lifetime are provided.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35258927</pmid><doi>10.1021/acsami.1c22812</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3850-0505</orcidid><orcidid>https://orcid.org/0000-0002-8281-9524</orcidid><orcidid>https://orcid.org/0000-0002-3993-9045</orcidid><orcidid>https://orcid.org/0000-0001-5572-192X</orcidid><orcidid>https://orcid.org/0000000338500505</orcidid><orcidid>https://orcid.org/000000015572192X</orcidid><orcidid>https://orcid.org/0000000239939045</orcidid><orcidid>https://orcid.org/0000000282819524</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-03, Vol.14 (11), p.13206-13222 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9098117 |
source | ACS Publications |
subjects | degradation electrolyte reactivity ENERGY STORAGE Energy, Environmental, and Catalysis Applications ethyl methyl carbonate ethylene carbonate lattice oxygen lithium-ion batteries Ni-rich cathode NMC |
title | Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrolyte%20Reactivity%20at%20the%20Charged%20Ni-Rich%20Cathode%20Interface%20and%20Degradation%20in%20Li-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Dose,%20Wesley%20M.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Cell%20Analysis,%20Modeling%20and%20Prototyping%20(CAMP)%20Facility&rft.date=2022-03-23&rft.volume=14&rft.issue=11&rft.spage=13206&rft.epage=13222&rft.pages=13206-13222&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c22812&rft_dat=%3Cproquest_pubme%3E2637580575%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637580575&rft_id=info:pmid/35258927&rfr_iscdi=true |