Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries

The chemical and electrochemical reactions at the positive electrode–electrolyte interface in Li-ion batteries are hugely influential on cycle life and safety. Ni-rich layered transition metal oxides exhibit higher interfacial reactivity than their lower Ni-content analogues, reacting via mechanisms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-03, Vol.14 (11), p.13206-13222
Hauptverfasser: Dose, Wesley M., Temprano, Israel, Allen, Jennifer P., Björklund, Erik, O’Keefe, Christopher A., Li, Weiqun, Mehdi, B. Layla, Weatherup, Robert S., De Volder, Michael F. L., Grey, Clare P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13222
container_issue 11
container_start_page 13206
container_title ACS applied materials & interfaces
container_volume 14
creator Dose, Wesley M.
Temprano, Israel
Allen, Jennifer P.
Björklund, Erik
O’Keefe, Christopher A.
Li, Weiqun
Mehdi, B. Layla
Weatherup, Robert S.
De Volder, Michael F. L.
Grey, Clare P.
description The chemical and electrochemical reactions at the positive electrode–electrolyte interface in Li-ion batteries are hugely influential on cycle life and safety. Ni-rich layered transition metal oxides exhibit higher interfacial reactivity than their lower Ni-content analogues, reacting via mechanisms that are poorly understood. Here, we study the pivotal role of the electrolyte solvent, specifically cyclic ethylene carbonate (EC) and linear ethyl methyl carbonate (EMC), in determining the interfacial reactivity at charged LiNi0.33Mn0.33Co0.33O2 (NMC111) and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes by using both single-solvent model electrolytes and the mixed solvents used in commercial cells. While NMC111 exhibits similar parasitic currents with EC-containing and EC-free electrolytes during high voltage holds in NMC/Li4Ti5O12 (LTO) cells, this is not the case for NMC811. Online gas analysis reveals that the solvent-dependent reactivity for Ni-rich cathodes is related to the extent of lattice oxygen release and accompanying electrolyte decomposition, which is higher for EC-containing than EC-free electrolytes. Combined findings from electrochemical impedance spectroscopy (EIS), TEM, solution NMR, ICP, and XPS reveal that the electrolyte solvent has a profound impact on the degradation of the Ni-rich cathode and the electrolyte. Higher lattice oxygen release with EC-containing electrolytes is coupled with higher cathode interfacial impedance, a thicker oxygen-deficient rock-salt surface reconstruction layer, more electrolyte solvent and salt breakdown, and higher amounts of transition metal dissolution. These processes are suppressed in the EC-free electrolyte, highlighting the incompatibility between Ni-rich cathodes and conventional electrolyte solvents. Finally, new mechanistic insights into the chemical oxidation pathways of electrolyte solvents and, critically, the knock-on chemical and electrochemical reactions that further degrade the electrolyte and electrodes curtailing battery lifetime are provided.
doi_str_mv 10.1021/acsami.1c22812
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9098117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637580575</sourcerecordid><originalsourceid>FETCH-LOGICAL-a452t-bf582a6d37308a7dacb533d3473d02731729e60a96f3d31f33f02182660bd66b3</originalsourceid><addsrcrecordid>eNp1kc2LFDEQxYMo7rp69SjBkwg95qPTHxdBx1UHBoVFz6E6qZ7O0pOsSWZh_nuz9DjowVOK1K9eUu8R8pKzFWeCvwOTYO9W3AjRcfGIXPK-rqtOKPH4XNf1BXmW0i1jjRRMPSUXUgnV9aK9JOZ6RpNjmI8Z6Q2Cye7e5SOFTPOEdD1B3KGl31x148xE15CnYJFufMY4gkEK3tJPuItgIbvgqfN066pNqT5CLpDD9Jw8GWFO-OJ0XpGfn69_rL9W2-9fNusP2wpqJXI1jKoT0FjZStZBa8EMSkor61ZaJlrJW9Fjw6BvxnLLRynH4kAnmoYNtmkGeUXeL7p3h2GP1qDPEWZ9F90e4lEHcPrfjneT3oV73bO-47wtAq8XgZCy08m4jGYywftikeaF6bsH6M3plRh-HTBlvXfJ4DyDx3BIWjSyVR1TrSroakFNDClFHM9_4Uw_xKeX-PQpvjLw6u8NzvifvArwdgHKoL4Nh-iLof9T-w3ufKTF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637580575</pqid></control><display><type>article</type><title>Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries</title><source>ACS Publications</source><creator>Dose, Wesley M. ; Temprano, Israel ; Allen, Jennifer P. ; Björklund, Erik ; O’Keefe, Christopher A. ; Li, Weiqun ; Mehdi, B. Layla ; Weatherup, Robert S. ; De Volder, Michael F. L. ; Grey, Clare P.</creator><creatorcontrib>Dose, Wesley M. ; Temprano, Israel ; Allen, Jennifer P. ; Björklund, Erik ; O’Keefe, Christopher A. ; Li, Weiqun ; Mehdi, B. Layla ; Weatherup, Robert S. ; De Volder, Michael F. L. ; Grey, Clare P. ; Argonne National Laboratory (ANL), Argonne, IL (United States). Cell Analysis, Modeling and Prototyping (CAMP) Facility</creatorcontrib><description>The chemical and electrochemical reactions at the positive electrode–electrolyte interface in Li-ion batteries are hugely influential on cycle life and safety. Ni-rich layered transition metal oxides exhibit higher interfacial reactivity than their lower Ni-content analogues, reacting via mechanisms that are poorly understood. Here, we study the pivotal role of the electrolyte solvent, specifically cyclic ethylene carbonate (EC) and linear ethyl methyl carbonate (EMC), in determining the interfacial reactivity at charged LiNi0.33Mn0.33Co0.33O2 (NMC111) and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes by using both single-solvent model electrolytes and the mixed solvents used in commercial cells. While NMC111 exhibits similar parasitic currents with EC-containing and EC-free electrolytes during high voltage holds in NMC/Li4Ti5O12 (LTO) cells, this is not the case for NMC811. Online gas analysis reveals that the solvent-dependent reactivity for Ni-rich cathodes is related to the extent of lattice oxygen release and accompanying electrolyte decomposition, which is higher for EC-containing than EC-free electrolytes. Combined findings from electrochemical impedance spectroscopy (EIS), TEM, solution NMR, ICP, and XPS reveal that the electrolyte solvent has a profound impact on the degradation of the Ni-rich cathode and the electrolyte. Higher lattice oxygen release with EC-containing electrolytes is coupled with higher cathode interfacial impedance, a thicker oxygen-deficient rock-salt surface reconstruction layer, more electrolyte solvent and salt breakdown, and higher amounts of transition metal dissolution. These processes are suppressed in the EC-free electrolyte, highlighting the incompatibility between Ni-rich cathodes and conventional electrolyte solvents. Finally, new mechanistic insights into the chemical oxidation pathways of electrolyte solvents and, critically, the knock-on chemical and electrochemical reactions that further degrade the electrolyte and electrodes curtailing battery lifetime are provided.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c22812</identifier><identifier>PMID: 35258927</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>degradation ; electrolyte reactivity ; ENERGY STORAGE ; Energy, Environmental, and Catalysis Applications ; ethyl methyl carbonate ; ethylene carbonate ; lattice oxygen ; lithium-ion batteries ; Ni-rich cathode ; NMC</subject><ispartof>ACS applied materials &amp; interfaces, 2022-03, Vol.14 (11), p.13206-13222</ispartof><rights>2022 American Chemical Society</rights><rights>2022 American Chemical Society 2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a452t-bf582a6d37308a7dacb533d3473d02731729e60a96f3d31f33f02182660bd66b3</citedby><cites>FETCH-LOGICAL-a452t-bf582a6d37308a7dacb533d3473d02731729e60a96f3d31f33f02182660bd66b3</cites><orcidid>0000-0003-3850-0505 ; 0000-0002-8281-9524 ; 0000-0002-3993-9045 ; 0000-0001-5572-192X ; 0000000338500505 ; 000000015572192X ; 0000000239939045 ; 0000000282819524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c22812$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c22812$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35258927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1981987$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dose, Wesley M.</creatorcontrib><creatorcontrib>Temprano, Israel</creatorcontrib><creatorcontrib>Allen, Jennifer P.</creatorcontrib><creatorcontrib>Björklund, Erik</creatorcontrib><creatorcontrib>O’Keefe, Christopher A.</creatorcontrib><creatorcontrib>Li, Weiqun</creatorcontrib><creatorcontrib>Mehdi, B. Layla</creatorcontrib><creatorcontrib>Weatherup, Robert S.</creatorcontrib><creatorcontrib>De Volder, Michael F. L.</creatorcontrib><creatorcontrib>Grey, Clare P.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Cell Analysis, Modeling and Prototyping (CAMP) Facility</creatorcontrib><title>Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The chemical and electrochemical reactions at the positive electrode–electrolyte interface in Li-ion batteries are hugely influential on cycle life and safety. Ni-rich layered transition metal oxides exhibit higher interfacial reactivity than their lower Ni-content analogues, reacting via mechanisms that are poorly understood. Here, we study the pivotal role of the electrolyte solvent, specifically cyclic ethylene carbonate (EC) and linear ethyl methyl carbonate (EMC), in determining the interfacial reactivity at charged LiNi0.33Mn0.33Co0.33O2 (NMC111) and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes by using both single-solvent model electrolytes and the mixed solvents used in commercial cells. While NMC111 exhibits similar parasitic currents with EC-containing and EC-free electrolytes during high voltage holds in NMC/Li4Ti5O12 (LTO) cells, this is not the case for NMC811. Online gas analysis reveals that the solvent-dependent reactivity for Ni-rich cathodes is related to the extent of lattice oxygen release and accompanying electrolyte decomposition, which is higher for EC-containing than EC-free electrolytes. Combined findings from electrochemical impedance spectroscopy (EIS), TEM, solution NMR, ICP, and XPS reveal that the electrolyte solvent has a profound impact on the degradation of the Ni-rich cathode and the electrolyte. Higher lattice oxygen release with EC-containing electrolytes is coupled with higher cathode interfacial impedance, a thicker oxygen-deficient rock-salt surface reconstruction layer, more electrolyte solvent and salt breakdown, and higher amounts of transition metal dissolution. These processes are suppressed in the EC-free electrolyte, highlighting the incompatibility between Ni-rich cathodes and conventional electrolyte solvents. Finally, new mechanistic insights into the chemical oxidation pathways of electrolyte solvents and, critically, the knock-on chemical and electrochemical reactions that further degrade the electrolyte and electrodes curtailing battery lifetime are provided.</description><subject>degradation</subject><subject>electrolyte reactivity</subject><subject>ENERGY STORAGE</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>ethyl methyl carbonate</subject><subject>ethylene carbonate</subject><subject>lattice oxygen</subject><subject>lithium-ion batteries</subject><subject>Ni-rich cathode</subject><subject>NMC</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kc2LFDEQxYMo7rp69SjBkwg95qPTHxdBx1UHBoVFz6E6qZ7O0pOsSWZh_nuz9DjowVOK1K9eUu8R8pKzFWeCvwOTYO9W3AjRcfGIXPK-rqtOKPH4XNf1BXmW0i1jjRRMPSUXUgnV9aK9JOZ6RpNjmI8Z6Q2Cye7e5SOFTPOEdD1B3KGl31x148xE15CnYJFufMY4gkEK3tJPuItgIbvgqfN066pNqT5CLpDD9Jw8GWFO-OJ0XpGfn69_rL9W2-9fNusP2wpqJXI1jKoT0FjZStZBa8EMSkor61ZaJlrJW9Fjw6BvxnLLRynH4kAnmoYNtmkGeUXeL7p3h2GP1qDPEWZ9F90e4lEHcPrfjneT3oV73bO-47wtAq8XgZCy08m4jGYywftikeaF6bsH6M3plRh-HTBlvXfJ4DyDx3BIWjSyVR1TrSroakFNDClFHM9_4Uw_xKeX-PQpvjLw6u8NzvifvArwdgHKoL4Nh-iLof9T-w3ufKTF</recordid><startdate>20220323</startdate><enddate>20220323</enddate><creator>Dose, Wesley M.</creator><creator>Temprano, Israel</creator><creator>Allen, Jennifer P.</creator><creator>Björklund, Erik</creator><creator>O’Keefe, Christopher A.</creator><creator>Li, Weiqun</creator><creator>Mehdi, B. Layla</creator><creator>Weatherup, Robert S.</creator><creator>De Volder, Michael F. L.</creator><creator>Grey, Clare P.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3850-0505</orcidid><orcidid>https://orcid.org/0000-0002-8281-9524</orcidid><orcidid>https://orcid.org/0000-0002-3993-9045</orcidid><orcidid>https://orcid.org/0000-0001-5572-192X</orcidid><orcidid>https://orcid.org/0000000338500505</orcidid><orcidid>https://orcid.org/000000015572192X</orcidid><orcidid>https://orcid.org/0000000239939045</orcidid><orcidid>https://orcid.org/0000000282819524</orcidid></search><sort><creationdate>20220323</creationdate><title>Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries</title><author>Dose, Wesley M. ; Temprano, Israel ; Allen, Jennifer P. ; Björklund, Erik ; O’Keefe, Christopher A. ; Li, Weiqun ; Mehdi, B. Layla ; Weatherup, Robert S. ; De Volder, Michael F. L. ; Grey, Clare P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a452t-bf582a6d37308a7dacb533d3473d02731729e60a96f3d31f33f02182660bd66b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>degradation</topic><topic>electrolyte reactivity</topic><topic>ENERGY STORAGE</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>ethyl methyl carbonate</topic><topic>ethylene carbonate</topic><topic>lattice oxygen</topic><topic>lithium-ion batteries</topic><topic>Ni-rich cathode</topic><topic>NMC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dose, Wesley M.</creatorcontrib><creatorcontrib>Temprano, Israel</creatorcontrib><creatorcontrib>Allen, Jennifer P.</creatorcontrib><creatorcontrib>Björklund, Erik</creatorcontrib><creatorcontrib>O’Keefe, Christopher A.</creatorcontrib><creatorcontrib>Li, Weiqun</creatorcontrib><creatorcontrib>Mehdi, B. Layla</creatorcontrib><creatorcontrib>Weatherup, Robert S.</creatorcontrib><creatorcontrib>De Volder, Michael F. L.</creatorcontrib><creatorcontrib>Grey, Clare P.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Cell Analysis, Modeling and Prototyping (CAMP) Facility</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dose, Wesley M.</au><au>Temprano, Israel</au><au>Allen, Jennifer P.</au><au>Björklund, Erik</au><au>O’Keefe, Christopher A.</au><au>Li, Weiqun</au><au>Mehdi, B. Layla</au><au>Weatherup, Robert S.</au><au>De Volder, Michael F. L.</au><au>Grey, Clare P.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Cell Analysis, Modeling and Prototyping (CAMP) Facility</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-03-23</date><risdate>2022</risdate><volume>14</volume><issue>11</issue><spage>13206</spage><epage>13222</epage><pages>13206-13222</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The chemical and electrochemical reactions at the positive electrode–electrolyte interface in Li-ion batteries are hugely influential on cycle life and safety. Ni-rich layered transition metal oxides exhibit higher interfacial reactivity than their lower Ni-content analogues, reacting via mechanisms that are poorly understood. Here, we study the pivotal role of the electrolyte solvent, specifically cyclic ethylene carbonate (EC) and linear ethyl methyl carbonate (EMC), in determining the interfacial reactivity at charged LiNi0.33Mn0.33Co0.33O2 (NMC111) and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes by using both single-solvent model electrolytes and the mixed solvents used in commercial cells. While NMC111 exhibits similar parasitic currents with EC-containing and EC-free electrolytes during high voltage holds in NMC/Li4Ti5O12 (LTO) cells, this is not the case for NMC811. Online gas analysis reveals that the solvent-dependent reactivity for Ni-rich cathodes is related to the extent of lattice oxygen release and accompanying electrolyte decomposition, which is higher for EC-containing than EC-free electrolytes. Combined findings from electrochemical impedance spectroscopy (EIS), TEM, solution NMR, ICP, and XPS reveal that the electrolyte solvent has a profound impact on the degradation of the Ni-rich cathode and the electrolyte. Higher lattice oxygen release with EC-containing electrolytes is coupled with higher cathode interfacial impedance, a thicker oxygen-deficient rock-salt surface reconstruction layer, more electrolyte solvent and salt breakdown, and higher amounts of transition metal dissolution. These processes are suppressed in the EC-free electrolyte, highlighting the incompatibility between Ni-rich cathodes and conventional electrolyte solvents. Finally, new mechanistic insights into the chemical oxidation pathways of electrolyte solvents and, critically, the knock-on chemical and electrochemical reactions that further degrade the electrolyte and electrodes curtailing battery lifetime are provided.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35258927</pmid><doi>10.1021/acsami.1c22812</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3850-0505</orcidid><orcidid>https://orcid.org/0000-0002-8281-9524</orcidid><orcidid>https://orcid.org/0000-0002-3993-9045</orcidid><orcidid>https://orcid.org/0000-0001-5572-192X</orcidid><orcidid>https://orcid.org/0000000338500505</orcidid><orcidid>https://orcid.org/000000015572192X</orcidid><orcidid>https://orcid.org/0000000239939045</orcidid><orcidid>https://orcid.org/0000000282819524</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-03, Vol.14 (11), p.13206-13222
issn 1944-8244
1944-8252
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9098117
source ACS Publications
subjects degradation
electrolyte reactivity
ENERGY STORAGE
Energy, Environmental, and Catalysis Applications
ethyl methyl carbonate
ethylene carbonate
lattice oxygen
lithium-ion batteries
Ni-rich cathode
NMC
title Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrolyte%20Reactivity%20at%20the%20Charged%20Ni-Rich%20Cathode%20Interface%20and%20Degradation%20in%20Li-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Dose,%20Wesley%20M.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Cell%20Analysis,%20Modeling%20and%20Prototyping%20(CAMP)%20Facility&rft.date=2022-03-23&rft.volume=14&rft.issue=11&rft.spage=13206&rft.epage=13222&rft.pages=13206-13222&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c22812&rft_dat=%3Cproquest_pubme%3E2637580575%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637580575&rft_id=info:pmid/35258927&rfr_iscdi=true