Radiomics-Based Machine Learning for Outcome Prediction in a Multicenter Phase II Study of Programmed Death-Ligand 1 Inhibition Immunotherapy for Glioblastoma
Imaging assessment of an immunotherapy response in glioblastoma is challenging due to overlap in the appearance of treatment-related changes with tumor progression. Our purpose was to determine whether MR imaging radiomics-based machine learning can predict progression-free survival and overall surv...
Gespeichert in:
Veröffentlicht in: | American journal of neuroradiology : AJNR 2022-05, Vol.43 (5), p.675-681 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 681 |
---|---|
container_issue | 5 |
container_start_page | 675 |
container_title | American journal of neuroradiology : AJNR |
container_volume | 43 |
creator | George, E Flagg, E Chang, K Bai, H X Aerts, H J Vallières, M Reardon, D A Huang, R Y |
description | Imaging assessment of an immunotherapy response in glioblastoma is challenging due to overlap in the appearance of treatment-related changes with tumor progression. Our purpose was to determine whether MR imaging radiomics-based machine learning can predict progression-free survival and overall survival in patients with glioblastoma on programmed death-ligand 1 inhibition immunotherapy.
Post hoc analysis was performed of a multicenter trial on the efficacy of durvalumab in glioblastoma (
= 113). Radiomics tumor features on pretreatment and first on-treatment time point MR imaging were extracted. The random survival forest algorithm was applied to clinical and radiomics features from pretreatment and first on-treatment MR imaging from a subset of trial sites (
= 60-74) to train a model to predict long overall survival and progression-free survival and was tested externally on data from the remaining sites (
= 29-43). Model performance was assessed using the concordance index and dynamic area under the curve from different time points.
The mean age was 55.2 (SD, 11.5) years, and 69% of patients were male. Pretreatment MR imaging features had a poor predictive value for overall survival and progression-free survival (concordance index = 0.472-0.524). First on-treatment MR imaging features had high predictive value for overall survival (concordance index = 0.692-0.750) and progression-free survival (concordance index = 0.680-0.715).
A radiomics-based machine learning model from first on-treatment MR imaging predicts survival in patients with glioblastoma on programmed death-ligand 1 inhibition immunotherapy. |
doi_str_mv | 10.3174/ajnr.A7488 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9089247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658230583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-704c3f29d631ffb26a700862d03bb3c71c483b98446c637c5bde35968c3f6b593</originalsourceid><addsrcrecordid>eNpVkc9u1DAQhy1ERZfChQdAPiKktHYcO_YFqRQokbZqxR-Jm2U7zsZVbC-2g7Qvw7OS3ZaqPc1hvvlmRj8A3mB0SnDbnKnbkE7P24bzZ2CFBWGVoOLXc7BCWNCKYcSPwcucbxFCVLT1C3BMaMOJQGwF_n5TvYvemVx9VNn28EqZ0QUL11al4MIGDjHB67mY6C28SbZ3prgYoAtQwat5Ks7YUGyCN-MyD7sOfi9zv4NxWOi4Scr7xfrJqjJWa7dRoYcYdmF02h08nfdziGW0SW13h2WXk4t6UrlEr16Bo0FN2b6-ryfg55fPPy6-Vuvry-7ifF0Z0vJStagxZKhFzwgeBl0z1SLEWd0jojUxLTbLv1rwpmGGkdZQ3VtCBePLFNNUkBPw4c67nfVy7_6lpCa5Tc6rtJNROfm0E9woN_GPFIiLumkXwbt7QYq_Z5uL9C4bO00q2DhnWTPKa4IoJwv6_g41Keac7PCwBiO5D1TuA5WHQBf47ePDHtD_CZJ_L_ufkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658230583</pqid></control><display><type>article</type><title>Radiomics-Based Machine Learning for Outcome Prediction in a Multicenter Phase II Study of Programmed Death-Ligand 1 Inhibition Immunotherapy for Glioblastoma</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>George, E ; Flagg, E ; Chang, K ; Bai, H X ; Aerts, H J ; Vallières, M ; Reardon, D A ; Huang, R Y</creator><creatorcontrib>George, E ; Flagg, E ; Chang, K ; Bai, H X ; Aerts, H J ; Vallières, M ; Reardon, D A ; Huang, R Y</creatorcontrib><description>Imaging assessment of an immunotherapy response in glioblastoma is challenging due to overlap in the appearance of treatment-related changes with tumor progression. Our purpose was to determine whether MR imaging radiomics-based machine learning can predict progression-free survival and overall survival in patients with glioblastoma on programmed death-ligand 1 inhibition immunotherapy.
Post hoc analysis was performed of a multicenter trial on the efficacy of durvalumab in glioblastoma (
= 113). Radiomics tumor features on pretreatment and first on-treatment time point MR imaging were extracted. The random survival forest algorithm was applied to clinical and radiomics features from pretreatment and first on-treatment MR imaging from a subset of trial sites (
= 60-74) to train a model to predict long overall survival and progression-free survival and was tested externally on data from the remaining sites (
= 29-43). Model performance was assessed using the concordance index and dynamic area under the curve from different time points.
The mean age was 55.2 (SD, 11.5) years, and 69% of patients were male. Pretreatment MR imaging features had a poor predictive value for overall survival and progression-free survival (concordance index = 0.472-0.524). First on-treatment MR imaging features had high predictive value for overall survival (concordance index = 0.692-0.750) and progression-free survival (concordance index = 0.680-0.715).
A radiomics-based machine learning model from first on-treatment MR imaging predicts survival in patients with glioblastoma on programmed death-ligand 1 inhibition immunotherapy.</description><identifier>ISSN: 0195-6108</identifier><identifier>ISSN: 1936-959X</identifier><identifier>EISSN: 1936-959X</identifier><identifier>DOI: 10.3174/ajnr.A7488</identifier><identifier>PMID: 35483906</identifier><language>eng</language><publisher>United States: American Society of Neuroradiology</publisher><subject>Adult Brain ; B7-H1 Antigen ; Female ; Functional ; Glioblastoma - diagnostic imaging ; Glioblastoma - drug therapy ; Humans ; Immunotherapy ; Machine Learning ; Magnetic Resonance Imaging - methods ; Male ; Middle Aged ; Retrospective Studies</subject><ispartof>American journal of neuroradiology : AJNR, 2022-05, Vol.43 (5), p.675-681</ispartof><rights>2022 by American Journal of Neuroradiology.</rights><rights>2022 by American Journal of Neuroradiology 2022 American Journal of Neuroradiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-704c3f29d631ffb26a700862d03bb3c71c483b98446c637c5bde35968c3f6b593</citedby><cites>FETCH-LOGICAL-c378t-704c3f29d631ffb26a700862d03bb3c71c483b98446c637c5bde35968c3f6b593</cites><orcidid>0000-0001-6674-0157 ; 0000-0001-7639-8172 ; 0000-0002-7460-8866 ; 0000-0003-3141-5738 ; 0000-0003-4111-9609 ; 0000-0001-7661-797X ; 0000-0001-6956-5059 ; 0000-0002-2122-2003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9089247/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9089247/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35483906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>George, E</creatorcontrib><creatorcontrib>Flagg, E</creatorcontrib><creatorcontrib>Chang, K</creatorcontrib><creatorcontrib>Bai, H X</creatorcontrib><creatorcontrib>Aerts, H J</creatorcontrib><creatorcontrib>Vallières, M</creatorcontrib><creatorcontrib>Reardon, D A</creatorcontrib><creatorcontrib>Huang, R Y</creatorcontrib><title>Radiomics-Based Machine Learning for Outcome Prediction in a Multicenter Phase II Study of Programmed Death-Ligand 1 Inhibition Immunotherapy for Glioblastoma</title><title>American journal of neuroradiology : AJNR</title><addtitle>AJNR Am J Neuroradiol</addtitle><description>Imaging assessment of an immunotherapy response in glioblastoma is challenging due to overlap in the appearance of treatment-related changes with tumor progression. Our purpose was to determine whether MR imaging radiomics-based machine learning can predict progression-free survival and overall survival in patients with glioblastoma on programmed death-ligand 1 inhibition immunotherapy.
Post hoc analysis was performed of a multicenter trial on the efficacy of durvalumab in glioblastoma (
= 113). Radiomics tumor features on pretreatment and first on-treatment time point MR imaging were extracted. The random survival forest algorithm was applied to clinical and radiomics features from pretreatment and first on-treatment MR imaging from a subset of trial sites (
= 60-74) to train a model to predict long overall survival and progression-free survival and was tested externally on data from the remaining sites (
= 29-43). Model performance was assessed using the concordance index and dynamic area under the curve from different time points.
The mean age was 55.2 (SD, 11.5) years, and 69% of patients were male. Pretreatment MR imaging features had a poor predictive value for overall survival and progression-free survival (concordance index = 0.472-0.524). First on-treatment MR imaging features had high predictive value for overall survival (concordance index = 0.692-0.750) and progression-free survival (concordance index = 0.680-0.715).
A radiomics-based machine learning model from first on-treatment MR imaging predicts survival in patients with glioblastoma on programmed death-ligand 1 inhibition immunotherapy.</description><subject>Adult Brain</subject><subject>B7-H1 Antigen</subject><subject>Female</subject><subject>Functional</subject><subject>Glioblastoma - diagnostic imaging</subject><subject>Glioblastoma - drug therapy</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Retrospective Studies</subject><issn>0195-6108</issn><issn>1936-959X</issn><issn>1936-959X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc9u1DAQhy1ERZfChQdAPiKktHYcO_YFqRQokbZqxR-Jm2U7zsZVbC-2g7Qvw7OS3ZaqPc1hvvlmRj8A3mB0SnDbnKnbkE7P24bzZ2CFBWGVoOLXc7BCWNCKYcSPwcucbxFCVLT1C3BMaMOJQGwF_n5TvYvemVx9VNn28EqZ0QUL11al4MIGDjHB67mY6C28SbZ3prgYoAtQwat5Ks7YUGyCN-MyD7sOfi9zv4NxWOi4Scr7xfrJqjJWa7dRoYcYdmF02h08nfdziGW0SW13h2WXk4t6UrlEr16Bo0FN2b6-ryfg55fPPy6-Vuvry-7ifF0Z0vJStagxZKhFzwgeBl0z1SLEWd0jojUxLTbLv1rwpmGGkdZQ3VtCBePLFNNUkBPw4c67nfVy7_6lpCa5Tc6rtJNROfm0E9woN_GPFIiLumkXwbt7QYq_Z5uL9C4bO00q2DhnWTPKa4IoJwv6_g41Keac7PCwBiO5D1TuA5WHQBf47ePDHtD_CZJ_L_ufkA</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>George, E</creator><creator>Flagg, E</creator><creator>Chang, K</creator><creator>Bai, H X</creator><creator>Aerts, H J</creator><creator>Vallières, M</creator><creator>Reardon, D A</creator><creator>Huang, R Y</creator><general>American Society of Neuroradiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6674-0157</orcidid><orcidid>https://orcid.org/0000-0001-7639-8172</orcidid><orcidid>https://orcid.org/0000-0002-7460-8866</orcidid><orcidid>https://orcid.org/0000-0003-3141-5738</orcidid><orcidid>https://orcid.org/0000-0003-4111-9609</orcidid><orcidid>https://orcid.org/0000-0001-7661-797X</orcidid><orcidid>https://orcid.org/0000-0001-6956-5059</orcidid><orcidid>https://orcid.org/0000-0002-2122-2003</orcidid></search><sort><creationdate>202205</creationdate><title>Radiomics-Based Machine Learning for Outcome Prediction in a Multicenter Phase II Study of Programmed Death-Ligand 1 Inhibition Immunotherapy for Glioblastoma</title><author>George, E ; Flagg, E ; Chang, K ; Bai, H X ; Aerts, H J ; Vallières, M ; Reardon, D A ; Huang, R Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-704c3f29d631ffb26a700862d03bb3c71c483b98446c637c5bde35968c3f6b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adult Brain</topic><topic>B7-H1 Antigen</topic><topic>Female</topic><topic>Functional</topic><topic>Glioblastoma - diagnostic imaging</topic><topic>Glioblastoma - drug therapy</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Retrospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>George, E</creatorcontrib><creatorcontrib>Flagg, E</creatorcontrib><creatorcontrib>Chang, K</creatorcontrib><creatorcontrib>Bai, H X</creatorcontrib><creatorcontrib>Aerts, H J</creatorcontrib><creatorcontrib>Vallières, M</creatorcontrib><creatorcontrib>Reardon, D A</creatorcontrib><creatorcontrib>Huang, R Y</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of neuroradiology : AJNR</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>George, E</au><au>Flagg, E</au><au>Chang, K</au><au>Bai, H X</au><au>Aerts, H J</au><au>Vallières, M</au><au>Reardon, D A</au><au>Huang, R Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiomics-Based Machine Learning for Outcome Prediction in a Multicenter Phase II Study of Programmed Death-Ligand 1 Inhibition Immunotherapy for Glioblastoma</atitle><jtitle>American journal of neuroradiology : AJNR</jtitle><addtitle>AJNR Am J Neuroradiol</addtitle><date>2022-05</date><risdate>2022</risdate><volume>43</volume><issue>5</issue><spage>675</spage><epage>681</epage><pages>675-681</pages><issn>0195-6108</issn><issn>1936-959X</issn><eissn>1936-959X</eissn><abstract>Imaging assessment of an immunotherapy response in glioblastoma is challenging due to overlap in the appearance of treatment-related changes with tumor progression. Our purpose was to determine whether MR imaging radiomics-based machine learning can predict progression-free survival and overall survival in patients with glioblastoma on programmed death-ligand 1 inhibition immunotherapy.
Post hoc analysis was performed of a multicenter trial on the efficacy of durvalumab in glioblastoma (
= 113). Radiomics tumor features on pretreatment and first on-treatment time point MR imaging were extracted. The random survival forest algorithm was applied to clinical and radiomics features from pretreatment and first on-treatment MR imaging from a subset of trial sites (
= 60-74) to train a model to predict long overall survival and progression-free survival and was tested externally on data from the remaining sites (
= 29-43). Model performance was assessed using the concordance index and dynamic area under the curve from different time points.
The mean age was 55.2 (SD, 11.5) years, and 69% of patients were male. Pretreatment MR imaging features had a poor predictive value for overall survival and progression-free survival (concordance index = 0.472-0.524). First on-treatment MR imaging features had high predictive value for overall survival (concordance index = 0.692-0.750) and progression-free survival (concordance index = 0.680-0.715).
A radiomics-based machine learning model from first on-treatment MR imaging predicts survival in patients with glioblastoma on programmed death-ligand 1 inhibition immunotherapy.</abstract><cop>United States</cop><pub>American Society of Neuroradiology</pub><pmid>35483906</pmid><doi>10.3174/ajnr.A7488</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6674-0157</orcidid><orcidid>https://orcid.org/0000-0001-7639-8172</orcidid><orcidid>https://orcid.org/0000-0002-7460-8866</orcidid><orcidid>https://orcid.org/0000-0003-3141-5738</orcidid><orcidid>https://orcid.org/0000-0003-4111-9609</orcidid><orcidid>https://orcid.org/0000-0001-7661-797X</orcidid><orcidid>https://orcid.org/0000-0001-6956-5059</orcidid><orcidid>https://orcid.org/0000-0002-2122-2003</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0195-6108 |
ispartof | American journal of neuroradiology : AJNR, 2022-05, Vol.43 (5), p.675-681 |
issn | 0195-6108 1936-959X 1936-959X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9089247 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adult Brain B7-H1 Antigen Female Functional Glioblastoma - diagnostic imaging Glioblastoma - drug therapy Humans Immunotherapy Machine Learning Magnetic Resonance Imaging - methods Male Middle Aged Retrospective Studies |
title | Radiomics-Based Machine Learning for Outcome Prediction in a Multicenter Phase II Study of Programmed Death-Ligand 1 Inhibition Immunotherapy for Glioblastoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiomics-Based%20Machine%20Learning%20for%20Outcome%20Prediction%20in%20a%20Multicenter%20Phase%20II%20Study%20of%20Programmed%20Death-Ligand%201%20Inhibition%20Immunotherapy%20for%20Glioblastoma&rft.jtitle=American%20journal%20of%20neuroradiology%20:%20AJNR&rft.au=George,%20E&rft.date=2022-05&rft.volume=43&rft.issue=5&rft.spage=675&rft.epage=681&rft.pages=675-681&rft.issn=0195-6108&rft.eissn=1936-959X&rft_id=info:doi/10.3174/ajnr.A7488&rft_dat=%3Cproquest_pubme%3E2658230583%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658230583&rft_id=info:pmid/35483906&rfr_iscdi=true |