Monitoring and Tracking the Evolution of a Viral Epidemic Through Nonlinear Kalman Filtering: Application to the COVID-19 Case

This work presents a novel methodology for systematically processing the time series that report the number of positive, recovered and deceased cases from a viral epidemic, such as Covid-19. The main objective is to unveil the evolution of the number of real infected people, and consequently to pred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2022-04, Vol.26 (4), p.1441-1452
Hauptverfasser: Gomez-Exposito, Antonio, Rosendo-Macias, Jose A., Gonzalez-Cagigal, Miguel A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1452
container_issue 4
container_start_page 1441
container_title IEEE journal of biomedical and health informatics
container_volume 26
creator Gomez-Exposito, Antonio
Rosendo-Macias, Jose A.
Gonzalez-Cagigal, Miguel A.
description This work presents a novel methodology for systematically processing the time series that report the number of positive, recovered and deceased cases from a viral epidemic, such as Covid-19. The main objective is to unveil the evolution of the number of real infected people, and consequently to predict the peak of the epidemic and subsequent evolution. For this purpose, an original nonlinear model relating the raw data with the time-varying geometric ratio of infected people is elaborated, and a Kalman Filter is used to estimate the involved state variables. A hypothetical simulated case is used to show the adequacy and limitations of the proposed method. Then, several countries, including China, South Korea, Italy, Spain, U.K. and the USA, are tested to illustrate its behavior when real-life data are processed. The results obtained clearly show the beneficial effect of the severe lockdowns imposed by many countries worldwide, but also that the softer social distancing measures adopted afterwards have been almost always insufficient to prevent the subsequent virus waves.
doi_str_mv 10.1109/JBHI.2021.3063106
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9088803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9367270</ieee_id><sourcerecordid>2497078465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3626-35eb76f9d9c3e6349babe3efe1a2396ce5ade8fa4fedc9bf052599a585c058303</originalsourceid><addsrcrecordid>eNpdkUtv1DAURiMEolXpD0BIyBIbNhn8iB2bBVIZpnSg0M3QreU4NzMuGTt1kkps-tvrdKYjwBs_7rlHvvqy7DXBM0Kw-vDt88VyRjElM4YFI1g8y44pETKnFMvnT2eiiqPstO9vcFoyPSnxMjtiTPASY36c3f8I3g0hOr9GxtdoFY39PV2GDaDFXWjHwQWPQoMMunbRtGjRuRq2zqLVJoZxvUE_g2-dBxPRd9NujUfnrh1gMn5EZ13XOmseHUN4lM6vrpdfcqLQ3PTwKnvRmLaH0_1-kv06X6zmF_nl1dfl_Owyt0xQkTMOVSkaVSvLQLBCVaYCBg0QQ5kSFripQTamaKC2qmowp1wpwyW3mEuG2Un2aeftxmqbGPBDmkV30W1N_KODcfrfincbvQ53WmEpJWZJ8H4viOF2hH7QW9dbaFvjIYy9poUqcSkLwRP67j_0JozRp_E0FRxTJRmTiSI7ysbQ9xGaw2cI1lPAegpYTwHrfcCp5-3fUxw6nuJMwJsd4ADgUFZMlLTE7AGR76ph</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650298338</pqid></control><display><type>article</type><title>Monitoring and Tracking the Evolution of a Viral Epidemic Through Nonlinear Kalman Filtering: Application to the COVID-19 Case</title><source>IEEE Electronic Library (IEL)</source><creator>Gomez-Exposito, Antonio ; Rosendo-Macias, Jose A. ; Gonzalez-Cagigal, Miguel A.</creator><creatorcontrib>Gomez-Exposito, Antonio ; Rosendo-Macias, Jose A. ; Gonzalez-Cagigal, Miguel A.</creatorcontrib><description>This work presents a novel methodology for systematically processing the time series that report the number of positive, recovered and deceased cases from a viral epidemic, such as Covid-19. The main objective is to unveil the evolution of the number of real infected people, and consequently to predict the peak of the epidemic and subsequent evolution. For this purpose, an original nonlinear model relating the raw data with the time-varying geometric ratio of infected people is elaborated, and a Kalman Filter is used to estimate the involved state variables. A hypothetical simulated case is used to show the adequacy and limitations of the proposed method. Then, several countries, including China, South Korea, Italy, Spain, U.K. and the USA, are tested to illustrate its behavior when real-life data are processed. The results obtained clearly show the beneficial effect of the severe lockdowns imposed by many countries worldwide, but also that the softer social distancing measures adopted afterwards have been almost always insufficient to prevent the subsequent virus waves.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2021.3063106</identifier><identifier>PMID: 33657005</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>1/f noise ; Adequacy ; Artificial intelligence ; Bioinformatics ; China - epidemiology ; Communicable Disease Control ; Coronaviruses ; COVID-19 ; COVID-19 - epidemiology ; Disease control ; Epidemics ; Evolution ; Field-flow fractionation ; geometric series ; Humans ; Iron ; Kalman filters ; Nonlinear Kalman filtering ; parameter estimation ; SARS-CoV-2 ; Three-dimensional displays ; Viruses</subject><ispartof>IEEE journal of biomedical and health informatics, 2022-04, Vol.26 (4), p.1441-1452</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>2021 IEEE</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3626-35eb76f9d9c3e6349babe3efe1a2396ce5ade8fa4fedc9bf052599a585c058303</citedby><cites>FETCH-LOGICAL-c3626-35eb76f9d9c3e6349babe3efe1a2396ce5ade8fa4fedc9bf052599a585c058303</cites><orcidid>0000-0002-8152-4353 ; 0000-0003-1720-6876 ; 0000-0002-0494-9307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9367270$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9367270$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33657005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez-Exposito, Antonio</creatorcontrib><creatorcontrib>Rosendo-Macias, Jose A.</creatorcontrib><creatorcontrib>Gonzalez-Cagigal, Miguel A.</creatorcontrib><title>Monitoring and Tracking the Evolution of a Viral Epidemic Through Nonlinear Kalman Filtering: Application to the COVID-19 Case</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>This work presents a novel methodology for systematically processing the time series that report the number of positive, recovered and deceased cases from a viral epidemic, such as Covid-19. The main objective is to unveil the evolution of the number of real infected people, and consequently to predict the peak of the epidemic and subsequent evolution. For this purpose, an original nonlinear model relating the raw data with the time-varying geometric ratio of infected people is elaborated, and a Kalman Filter is used to estimate the involved state variables. A hypothetical simulated case is used to show the adequacy and limitations of the proposed method. Then, several countries, including China, South Korea, Italy, Spain, U.K. and the USA, are tested to illustrate its behavior when real-life data are processed. The results obtained clearly show the beneficial effect of the severe lockdowns imposed by many countries worldwide, but also that the softer social distancing measures adopted afterwards have been almost always insufficient to prevent the subsequent virus waves.</description><subject>1/f noise</subject><subject>Adequacy</subject><subject>Artificial intelligence</subject><subject>Bioinformatics</subject><subject>China - epidemiology</subject><subject>Communicable Disease Control</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - epidemiology</subject><subject>Disease control</subject><subject>Epidemics</subject><subject>Evolution</subject><subject>Field-flow fractionation</subject><subject>geometric series</subject><subject>Humans</subject><subject>Iron</subject><subject>Kalman filters</subject><subject>Nonlinear Kalman filtering</subject><subject>parameter estimation</subject><subject>SARS-CoV-2</subject><subject>Three-dimensional displays</subject><subject>Viruses</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkUtv1DAURiMEolXpD0BIyBIbNhn8iB2bBVIZpnSg0M3QreU4NzMuGTt1kkps-tvrdKYjwBs_7rlHvvqy7DXBM0Kw-vDt88VyRjElM4YFI1g8y44pETKnFMvnT2eiiqPstO9vcFoyPSnxMjtiTPASY36c3f8I3g0hOr9GxtdoFY39PV2GDaDFXWjHwQWPQoMMunbRtGjRuRq2zqLVJoZxvUE_g2-dBxPRd9NujUfnrh1gMn5EZ13XOmseHUN4lM6vrpdfcqLQ3PTwKnvRmLaH0_1-kv06X6zmF_nl1dfl_Owyt0xQkTMOVSkaVSvLQLBCVaYCBg0QQ5kSFripQTamaKC2qmowp1wpwyW3mEuG2Un2aeftxmqbGPBDmkV30W1N_KODcfrfincbvQ53WmEpJWZJ8H4viOF2hH7QW9dbaFvjIYy9poUqcSkLwRP67j_0JozRp_E0FRxTJRmTiSI7ysbQ9xGaw2cI1lPAegpYTwHrfcCp5-3fUxw6nuJMwJsd4ADgUFZMlLTE7AGR76ph</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Gomez-Exposito, Antonio</creator><creator>Rosendo-Macias, Jose A.</creator><creator>Gonzalez-Cagigal, Miguel A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8152-4353</orcidid><orcidid>https://orcid.org/0000-0003-1720-6876</orcidid><orcidid>https://orcid.org/0000-0002-0494-9307</orcidid></search><sort><creationdate>20220401</creationdate><title>Monitoring and Tracking the Evolution of a Viral Epidemic Through Nonlinear Kalman Filtering: Application to the COVID-19 Case</title><author>Gomez-Exposito, Antonio ; Rosendo-Macias, Jose A. ; Gonzalez-Cagigal, Miguel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3626-35eb76f9d9c3e6349babe3efe1a2396ce5ade8fa4fedc9bf052599a585c058303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>1/f noise</topic><topic>Adequacy</topic><topic>Artificial intelligence</topic><topic>Bioinformatics</topic><topic>China - epidemiology</topic><topic>Communicable Disease Control</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - epidemiology</topic><topic>Disease control</topic><topic>Epidemics</topic><topic>Evolution</topic><topic>Field-flow fractionation</topic><topic>geometric series</topic><topic>Humans</topic><topic>Iron</topic><topic>Kalman filters</topic><topic>Nonlinear Kalman filtering</topic><topic>parameter estimation</topic><topic>SARS-CoV-2</topic><topic>Three-dimensional displays</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Exposito, Antonio</creatorcontrib><creatorcontrib>Rosendo-Macias, Jose A.</creatorcontrib><creatorcontrib>Gonzalez-Cagigal, Miguel A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gomez-Exposito, Antonio</au><au>Rosendo-Macias, Jose A.</au><au>Gonzalez-Cagigal, Miguel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring and Tracking the Evolution of a Viral Epidemic Through Nonlinear Kalman Filtering: Application to the COVID-19 Case</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>26</volume><issue>4</issue><spage>1441</spage><epage>1452</epage><pages>1441-1452</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>This work presents a novel methodology for systematically processing the time series that report the number of positive, recovered and deceased cases from a viral epidemic, such as Covid-19. The main objective is to unveil the evolution of the number of real infected people, and consequently to predict the peak of the epidemic and subsequent evolution. For this purpose, an original nonlinear model relating the raw data with the time-varying geometric ratio of infected people is elaborated, and a Kalman Filter is used to estimate the involved state variables. A hypothetical simulated case is used to show the adequacy and limitations of the proposed method. Then, several countries, including China, South Korea, Italy, Spain, U.K. and the USA, are tested to illustrate its behavior when real-life data are processed. The results obtained clearly show the beneficial effect of the severe lockdowns imposed by many countries worldwide, but also that the softer social distancing measures adopted afterwards have been almost always insufficient to prevent the subsequent virus waves.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33657005</pmid><doi>10.1109/JBHI.2021.3063106</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8152-4353</orcidid><orcidid>https://orcid.org/0000-0003-1720-6876</orcidid><orcidid>https://orcid.org/0000-0002-0494-9307</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2022-04, Vol.26 (4), p.1441-1452
issn 2168-2194
2168-2208
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9088803
source IEEE Electronic Library (IEL)
subjects 1/f noise
Adequacy
Artificial intelligence
Bioinformatics
China - epidemiology
Communicable Disease Control
Coronaviruses
COVID-19
COVID-19 - epidemiology
Disease control
Epidemics
Evolution
Field-flow fractionation
geometric series
Humans
Iron
Kalman filters
Nonlinear Kalman filtering
parameter estimation
SARS-CoV-2
Three-dimensional displays
Viruses
title Monitoring and Tracking the Evolution of a Viral Epidemic Through Nonlinear Kalman Filtering: Application to the COVID-19 Case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20and%20Tracking%20the%20Evolution%20of%20a%20Viral%20Epidemic%20Through%20Nonlinear%20Kalman%20Filtering:%20Application%20to%20the%20COVID-19%20Case&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Gomez-Exposito,%20Antonio&rft.date=2022-04-01&rft.volume=26&rft.issue=4&rft.spage=1441&rft.epage=1452&rft.pages=1441-1452&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2021.3063106&rft_dat=%3Cproquest_RIE%3E2497078465%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650298338&rft_id=info:pmid/33657005&rft_ieee_id=9367270&rfr_iscdi=true