Monitoring and Tracking the Evolution of a Viral Epidemic Through Nonlinear Kalman Filtering: Application to the COVID-19 Case
This work presents a novel methodology for systematically processing the time series that report the number of positive, recovered and deceased cases from a viral epidemic, such as Covid-19. The main objective is to unveil the evolution of the number of real infected people, and consequently to pred...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2022-04, Vol.26 (4), p.1441-1452 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1452 |
---|---|
container_issue | 4 |
container_start_page | 1441 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 26 |
creator | Gomez-Exposito, Antonio Rosendo-Macias, Jose A. Gonzalez-Cagigal, Miguel A. |
description | This work presents a novel methodology for systematically processing the time series that report the number of positive, recovered and deceased cases from a viral epidemic, such as Covid-19. The main objective is to unveil the evolution of the number of real infected people, and consequently to predict the peak of the epidemic and subsequent evolution. For this purpose, an original nonlinear model relating the raw data with the time-varying geometric ratio of infected people is elaborated, and a Kalman Filter is used to estimate the involved state variables. A hypothetical simulated case is used to show the adequacy and limitations of the proposed method. Then, several countries, including China, South Korea, Italy, Spain, U.K. and the USA, are tested to illustrate its behavior when real-life data are processed. The results obtained clearly show the beneficial effect of the severe lockdowns imposed by many countries worldwide, but also that the softer social distancing measures adopted afterwards have been almost always insufficient to prevent the subsequent virus waves. |
doi_str_mv | 10.1109/JBHI.2021.3063106 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9088803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9367270</ieee_id><sourcerecordid>2497078465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3626-35eb76f9d9c3e6349babe3efe1a2396ce5ade8fa4fedc9bf052599a585c058303</originalsourceid><addsrcrecordid>eNpdkUtv1DAURiMEolXpD0BIyBIbNhn8iB2bBVIZpnSg0M3QreU4NzMuGTt1kkps-tvrdKYjwBs_7rlHvvqy7DXBM0Kw-vDt88VyRjElM4YFI1g8y44pETKnFMvnT2eiiqPstO9vcFoyPSnxMjtiTPASY36c3f8I3g0hOr9GxtdoFY39PV2GDaDFXWjHwQWPQoMMunbRtGjRuRq2zqLVJoZxvUE_g2-dBxPRd9NujUfnrh1gMn5EZ13XOmseHUN4lM6vrpdfcqLQ3PTwKnvRmLaH0_1-kv06X6zmF_nl1dfl_Owyt0xQkTMOVSkaVSvLQLBCVaYCBg0QQ5kSFripQTamaKC2qmowp1wpwyW3mEuG2Un2aeftxmqbGPBDmkV30W1N_KODcfrfincbvQ53WmEpJWZJ8H4viOF2hH7QW9dbaFvjIYy9poUqcSkLwRP67j_0JozRp_E0FRxTJRmTiSI7ysbQ9xGaw2cI1lPAegpYTwHrfcCp5-3fUxw6nuJMwJsd4ADgUFZMlLTE7AGR76ph</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650298338</pqid></control><display><type>article</type><title>Monitoring and Tracking the Evolution of a Viral Epidemic Through Nonlinear Kalman Filtering: Application to the COVID-19 Case</title><source>IEEE Electronic Library (IEL)</source><creator>Gomez-Exposito, Antonio ; Rosendo-Macias, Jose A. ; Gonzalez-Cagigal, Miguel A.</creator><creatorcontrib>Gomez-Exposito, Antonio ; Rosendo-Macias, Jose A. ; Gonzalez-Cagigal, Miguel A.</creatorcontrib><description>This work presents a novel methodology for systematically processing the time series that report the number of positive, recovered and deceased cases from a viral epidemic, such as Covid-19. The main objective is to unveil the evolution of the number of real infected people, and consequently to predict the peak of the epidemic and subsequent evolution. For this purpose, an original nonlinear model relating the raw data with the time-varying geometric ratio of infected people is elaborated, and a Kalman Filter is used to estimate the involved state variables. A hypothetical simulated case is used to show the adequacy and limitations of the proposed method. Then, several countries, including China, South Korea, Italy, Spain, U.K. and the USA, are tested to illustrate its behavior when real-life data are processed. The results obtained clearly show the beneficial effect of the severe lockdowns imposed by many countries worldwide, but also that the softer social distancing measures adopted afterwards have been almost always insufficient to prevent the subsequent virus waves.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2021.3063106</identifier><identifier>PMID: 33657005</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>1/f noise ; Adequacy ; Artificial intelligence ; Bioinformatics ; China - epidemiology ; Communicable Disease Control ; Coronaviruses ; COVID-19 ; COVID-19 - epidemiology ; Disease control ; Epidemics ; Evolution ; Field-flow fractionation ; geometric series ; Humans ; Iron ; Kalman filters ; Nonlinear Kalman filtering ; parameter estimation ; SARS-CoV-2 ; Three-dimensional displays ; Viruses</subject><ispartof>IEEE journal of biomedical and health informatics, 2022-04, Vol.26 (4), p.1441-1452</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>2021 IEEE</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3626-35eb76f9d9c3e6349babe3efe1a2396ce5ade8fa4fedc9bf052599a585c058303</citedby><cites>FETCH-LOGICAL-c3626-35eb76f9d9c3e6349babe3efe1a2396ce5ade8fa4fedc9bf052599a585c058303</cites><orcidid>0000-0002-8152-4353 ; 0000-0003-1720-6876 ; 0000-0002-0494-9307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9367270$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9367270$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33657005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez-Exposito, Antonio</creatorcontrib><creatorcontrib>Rosendo-Macias, Jose A.</creatorcontrib><creatorcontrib>Gonzalez-Cagigal, Miguel A.</creatorcontrib><title>Monitoring and Tracking the Evolution of a Viral Epidemic Through Nonlinear Kalman Filtering: Application to the COVID-19 Case</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>This work presents a novel methodology for systematically processing the time series that report the number of positive, recovered and deceased cases from a viral epidemic, such as Covid-19. The main objective is to unveil the evolution of the number of real infected people, and consequently to predict the peak of the epidemic and subsequent evolution. For this purpose, an original nonlinear model relating the raw data with the time-varying geometric ratio of infected people is elaborated, and a Kalman Filter is used to estimate the involved state variables. A hypothetical simulated case is used to show the adequacy and limitations of the proposed method. Then, several countries, including China, South Korea, Italy, Spain, U.K. and the USA, are tested to illustrate its behavior when real-life data are processed. The results obtained clearly show the beneficial effect of the severe lockdowns imposed by many countries worldwide, but also that the softer social distancing measures adopted afterwards have been almost always insufficient to prevent the subsequent virus waves.</description><subject>1/f noise</subject><subject>Adequacy</subject><subject>Artificial intelligence</subject><subject>Bioinformatics</subject><subject>China - epidemiology</subject><subject>Communicable Disease Control</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - epidemiology</subject><subject>Disease control</subject><subject>Epidemics</subject><subject>Evolution</subject><subject>Field-flow fractionation</subject><subject>geometric series</subject><subject>Humans</subject><subject>Iron</subject><subject>Kalman filters</subject><subject>Nonlinear Kalman filtering</subject><subject>parameter estimation</subject><subject>SARS-CoV-2</subject><subject>Three-dimensional displays</subject><subject>Viruses</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkUtv1DAURiMEolXpD0BIyBIbNhn8iB2bBVIZpnSg0M3QreU4NzMuGTt1kkps-tvrdKYjwBs_7rlHvvqy7DXBM0Kw-vDt88VyRjElM4YFI1g8y44pETKnFMvnT2eiiqPstO9vcFoyPSnxMjtiTPASY36c3f8I3g0hOr9GxtdoFY39PV2GDaDFXWjHwQWPQoMMunbRtGjRuRq2zqLVJoZxvUE_g2-dBxPRd9NujUfnrh1gMn5EZ13XOmseHUN4lM6vrpdfcqLQ3PTwKnvRmLaH0_1-kv06X6zmF_nl1dfl_Owyt0xQkTMOVSkaVSvLQLBCVaYCBg0QQ5kSFripQTamaKC2qmowp1wpwyW3mEuG2Un2aeftxmqbGPBDmkV30W1N_KODcfrfincbvQ53WmEpJWZJ8H4viOF2hH7QW9dbaFvjIYy9poUqcSkLwRP67j_0JozRp_E0FRxTJRmTiSI7ysbQ9xGaw2cI1lPAegpYTwHrfcCp5-3fUxw6nuJMwJsd4ADgUFZMlLTE7AGR76ph</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Gomez-Exposito, Antonio</creator><creator>Rosendo-Macias, Jose A.</creator><creator>Gonzalez-Cagigal, Miguel A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8152-4353</orcidid><orcidid>https://orcid.org/0000-0003-1720-6876</orcidid><orcidid>https://orcid.org/0000-0002-0494-9307</orcidid></search><sort><creationdate>20220401</creationdate><title>Monitoring and Tracking the Evolution of a Viral Epidemic Through Nonlinear Kalman Filtering: Application to the COVID-19 Case</title><author>Gomez-Exposito, Antonio ; Rosendo-Macias, Jose A. ; Gonzalez-Cagigal, Miguel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3626-35eb76f9d9c3e6349babe3efe1a2396ce5ade8fa4fedc9bf052599a585c058303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>1/f noise</topic><topic>Adequacy</topic><topic>Artificial intelligence</topic><topic>Bioinformatics</topic><topic>China - epidemiology</topic><topic>Communicable Disease Control</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - epidemiology</topic><topic>Disease control</topic><topic>Epidemics</topic><topic>Evolution</topic><topic>Field-flow fractionation</topic><topic>geometric series</topic><topic>Humans</topic><topic>Iron</topic><topic>Kalman filters</topic><topic>Nonlinear Kalman filtering</topic><topic>parameter estimation</topic><topic>SARS-CoV-2</topic><topic>Three-dimensional displays</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Exposito, Antonio</creatorcontrib><creatorcontrib>Rosendo-Macias, Jose A.</creatorcontrib><creatorcontrib>Gonzalez-Cagigal, Miguel A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gomez-Exposito, Antonio</au><au>Rosendo-Macias, Jose A.</au><au>Gonzalez-Cagigal, Miguel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring and Tracking the Evolution of a Viral Epidemic Through Nonlinear Kalman Filtering: Application to the COVID-19 Case</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>26</volume><issue>4</issue><spage>1441</spage><epage>1452</epage><pages>1441-1452</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>This work presents a novel methodology for systematically processing the time series that report the number of positive, recovered and deceased cases from a viral epidemic, such as Covid-19. The main objective is to unveil the evolution of the number of real infected people, and consequently to predict the peak of the epidemic and subsequent evolution. For this purpose, an original nonlinear model relating the raw data with the time-varying geometric ratio of infected people is elaborated, and a Kalman Filter is used to estimate the involved state variables. A hypothetical simulated case is used to show the adequacy and limitations of the proposed method. Then, several countries, including China, South Korea, Italy, Spain, U.K. and the USA, are tested to illustrate its behavior when real-life data are processed. The results obtained clearly show the beneficial effect of the severe lockdowns imposed by many countries worldwide, but also that the softer social distancing measures adopted afterwards have been almost always insufficient to prevent the subsequent virus waves.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33657005</pmid><doi>10.1109/JBHI.2021.3063106</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8152-4353</orcidid><orcidid>https://orcid.org/0000-0003-1720-6876</orcidid><orcidid>https://orcid.org/0000-0002-0494-9307</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2022-04, Vol.26 (4), p.1441-1452 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9088803 |
source | IEEE Electronic Library (IEL) |
subjects | 1/f noise Adequacy Artificial intelligence Bioinformatics China - epidemiology Communicable Disease Control Coronaviruses COVID-19 COVID-19 - epidemiology Disease control Epidemics Evolution Field-flow fractionation geometric series Humans Iron Kalman filters Nonlinear Kalman filtering parameter estimation SARS-CoV-2 Three-dimensional displays Viruses |
title | Monitoring and Tracking the Evolution of a Viral Epidemic Through Nonlinear Kalman Filtering: Application to the COVID-19 Case |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20and%20Tracking%20the%20Evolution%20of%20a%20Viral%20Epidemic%20Through%20Nonlinear%20Kalman%20Filtering:%20Application%20to%20the%20COVID-19%20Case&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Gomez-Exposito,%20Antonio&rft.date=2022-04-01&rft.volume=26&rft.issue=4&rft.spage=1441&rft.epage=1452&rft.pages=1441-1452&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2021.3063106&rft_dat=%3Cproquest_RIE%3E2497078465%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650298338&rft_id=info:pmid/33657005&rft_ieee_id=9367270&rfr_iscdi=true |