Cumulative Advanced Breast Cancer Risk Prediction Model Developed in a Screening Mammography Population

Abstract Background Estimating advanced breast cancer risk in women undergoing annual or biennial mammography could identify women who may benefit from less or more intensive screening. We developed an actionable model to predict cumulative 6-year advanced cancer (prognostic pathologic stage II or h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JNCI : Journal of the National Cancer Institute 2022-05, Vol.114 (5), p.676-685
Hauptverfasser: Kerlikowske, Karla, Chen, Shuai, Golmakani, Marzieh K, Sprague, Brian L, Tice, Jeffrey A, Tosteson, Anna N A, Rauscher, Garth H, Henderson, Louise M, Buist, Diana S M, Lee, Janie M, Gard, Charlotte C, Miglioretti, Diana L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 685
container_issue 5
container_start_page 676
container_title JNCI : Journal of the National Cancer Institute
container_volume 114
creator Kerlikowske, Karla
Chen, Shuai
Golmakani, Marzieh K
Sprague, Brian L
Tice, Jeffrey A
Tosteson, Anna N A
Rauscher, Garth H
Henderson, Louise M
Buist, Diana S M
Lee, Janie M
Gard, Charlotte C
Miglioretti, Diana L
description Abstract Background Estimating advanced breast cancer risk in women undergoing annual or biennial mammography could identify women who may benefit from less or more intensive screening. We developed an actionable model to predict cumulative 6-year advanced cancer (prognostic pathologic stage II or higher) risk according to screening interval. Methods We included 931 186 women aged 40-74 years in the Breast Cancer Surveillance Consortium undergoing 2 542 382 annual (prior mammogram within 11-18 months) or 752 049 biennial (prior within 19-30 months) screening mammograms. The prediction model includes age, race and ethnicity, body mass index, breast density, family history of breast cancer, and prior breast biopsy subdivided by menopausal status and screening interval. We used fivefold cross-validation to internally validate model performance. We defined higher than 95th percentile as high risk (>0.658%), higher than 75th percentile to 95th or less percentile as intermediate risk (0.380%-0.658%), and 75th or less percentile as low to average risk (
doi_str_mv 10.1093/jnci/djac008
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9086807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jnci/djac008</oup_id><sourcerecordid>2620082111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-ae2b1261b9f5193ff6a06f2ff63c8a9d9d18a1410760e4a5a8ae0dc81682026e3</originalsourceid><addsrcrecordid>eNp9kUtv1DAURi1ERYfCjjWyxAIWhNqOk9gbpDI8WqkVFY-1dce5mXpI7GAnI_Xf18MMFbDAmyvLR0f-7kfIM87ecKbL04237rTdgGVMPSALLmtWCM6qh2TBmGgKpRp5TB6ntGH5aCEfkeOyYqJmXC_IejkPcw-T2yI9a7fgLbb0XURIE13ubpF-cekHvY7YOju54OlVaLGn73GLfRgz7TwF-tVGRO_8ml7BMIR1hPHmll6H8Zc8-CfkqIM-4dPDPCHfP374tjwvLj9_ulieXRZWSjkVgGLFRc1Xuqu4LruuBlZ3Is_SKtCtbrkCLjlraoYSKlCArLWK10rkSFiekLd77zivBmwt-ilCb8boBoi3JoAzf794d2PWYWs0U7ViTRa8Oghi-DljmszgksW-B49hTkbUIi9acM4z-uIfdBPm6HO8TDWVrESldKZe7ykbQ0oRu_vPcGZ2DZpdg-bQYMaf_xngHv5dWQZe7oEwj_9X3QHho6bU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675452589</pqid></control><display><type>article</type><title>Cumulative Advanced Breast Cancer Risk Prediction Model Developed in a Screening Mammography Population</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kerlikowske, Karla ; Chen, Shuai ; Golmakani, Marzieh K ; Sprague, Brian L ; Tice, Jeffrey A ; Tosteson, Anna N A ; Rauscher, Garth H ; Henderson, Louise M ; Buist, Diana S M ; Lee, Janie M ; Gard, Charlotte C ; Miglioretti, Diana L</creator><creatorcontrib>Kerlikowske, Karla ; Chen, Shuai ; Golmakani, Marzieh K ; Sprague, Brian L ; Tice, Jeffrey A ; Tosteson, Anna N A ; Rauscher, Garth H ; Henderson, Louise M ; Buist, Diana S M ; Lee, Janie M ; Gard, Charlotte C ; Miglioretti, Diana L</creatorcontrib><description>Abstract Background Estimating advanced breast cancer risk in women undergoing annual or biennial mammography could identify women who may benefit from less or more intensive screening. We developed an actionable model to predict cumulative 6-year advanced cancer (prognostic pathologic stage II or higher) risk according to screening interval. Methods We included 931 186 women aged 40-74 years in the Breast Cancer Surveillance Consortium undergoing 2 542 382 annual (prior mammogram within 11-18 months) or 752 049 biennial (prior within 19-30 months) screening mammograms. The prediction model includes age, race and ethnicity, body mass index, breast density, family history of breast cancer, and prior breast biopsy subdivided by menopausal status and screening interval. We used fivefold cross-validation to internally validate model performance. We defined higher than 95th percentile as high risk (&gt;0.658%), higher than 75th percentile to 95th or less percentile as intermediate risk (0.380%-0.658%), and 75th or less percentile as low to average risk (&lt;0.380%). Results Obesity, high breast density, and proliferative disease with atypia were strongly associated with advanced cancer. The model is well calibrated and has an area under the receiver operating characteristics curve of 0.682 (95% confidence interval = 0.670 to 0.694). Based on women’s predicted advanced cancer risk under annual and biennial screening, 69.1% had low or average risk regardless of screening interval, 12.4% intermediate risk with biennial screening and average risk with annual screening, and 17.4% intermediate or high risk regardless of screening interval. Conclusion Most women have low or average advanced cancer risk and can undergo biennial screening. Intermediate-risk women may consider annual screening, and high-risk women may consider supplemental imaging in addition to annual screening.</description><identifier>ISSN: 0027-8874</identifier><identifier>ISSN: 1460-2105</identifier><identifier>EISSN: 1460-2105</identifier><identifier>DOI: 10.1093/jnci/djac008</identifier><identifier>PMID: 35026019</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Biopsy ; Body mass ; Body mass index ; Body size ; Breast cancer ; Breast Density ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - epidemiology ; Confidence intervals ; Density ; Early Detection of Cancer - methods ; Editor's Choice ; Female ; Genetics ; Health risks ; Humans ; Mammography ; Mammography - methods ; Mass Screening - methods ; Menopause ; Minority &amp; ethnic groups ; Prediction models ; Risk ; Screening ; Time Factors</subject><ispartof>JNCI : Journal of the National Cancer Institute, 2022-05, Vol.114 (5), p.676-685</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-ae2b1261b9f5193ff6a06f2ff63c8a9d9d18a1410760e4a5a8ae0dc81682026e3</citedby><cites>FETCH-LOGICAL-c444t-ae2b1261b9f5193ff6a06f2ff63c8a9d9d18a1410760e4a5a8ae0dc81682026e3</cites><orcidid>0000-0002-9857-2028 ; 0000-0001-7201-4450 ; 0000-0001-7718-8943 ; 0000-0002-5547-1833 ; 0000-0001-5408-2804 ; 0000-0001-8793-8779 ; 0000-0002-2111-0773 ; 0000-0002-4016-8217 ; 0000-0002-6452-8168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1578,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35026019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kerlikowske, Karla</creatorcontrib><creatorcontrib>Chen, Shuai</creatorcontrib><creatorcontrib>Golmakani, Marzieh K</creatorcontrib><creatorcontrib>Sprague, Brian L</creatorcontrib><creatorcontrib>Tice, Jeffrey A</creatorcontrib><creatorcontrib>Tosteson, Anna N A</creatorcontrib><creatorcontrib>Rauscher, Garth H</creatorcontrib><creatorcontrib>Henderson, Louise M</creatorcontrib><creatorcontrib>Buist, Diana S M</creatorcontrib><creatorcontrib>Lee, Janie M</creatorcontrib><creatorcontrib>Gard, Charlotte C</creatorcontrib><creatorcontrib>Miglioretti, Diana L</creatorcontrib><title>Cumulative Advanced Breast Cancer Risk Prediction Model Developed in a Screening Mammography Population</title><title>JNCI : Journal of the National Cancer Institute</title><addtitle>J Natl Cancer Inst</addtitle><description>Abstract Background Estimating advanced breast cancer risk in women undergoing annual or biennial mammography could identify women who may benefit from less or more intensive screening. We developed an actionable model to predict cumulative 6-year advanced cancer (prognostic pathologic stage II or higher) risk according to screening interval. Methods We included 931 186 women aged 40-74 years in the Breast Cancer Surveillance Consortium undergoing 2 542 382 annual (prior mammogram within 11-18 months) or 752 049 biennial (prior within 19-30 months) screening mammograms. The prediction model includes age, race and ethnicity, body mass index, breast density, family history of breast cancer, and prior breast biopsy subdivided by menopausal status and screening interval. We used fivefold cross-validation to internally validate model performance. We defined higher than 95th percentile as high risk (&gt;0.658%), higher than 75th percentile to 95th or less percentile as intermediate risk (0.380%-0.658%), and 75th or less percentile as low to average risk (&lt;0.380%). Results Obesity, high breast density, and proliferative disease with atypia were strongly associated with advanced cancer. The model is well calibrated and has an area under the receiver operating characteristics curve of 0.682 (95% confidence interval = 0.670 to 0.694). Based on women’s predicted advanced cancer risk under annual and biennial screening, 69.1% had low or average risk regardless of screening interval, 12.4% intermediate risk with biennial screening and average risk with annual screening, and 17.4% intermediate or high risk regardless of screening interval. Conclusion Most women have low or average advanced cancer risk and can undergo biennial screening. Intermediate-risk women may consider annual screening, and high-risk women may consider supplemental imaging in addition to annual screening.</description><subject>Biopsy</subject><subject>Body mass</subject><subject>Body mass index</subject><subject>Body size</subject><subject>Breast cancer</subject><subject>Breast Density</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - epidemiology</subject><subject>Confidence intervals</subject><subject>Density</subject><subject>Early Detection of Cancer - methods</subject><subject>Editor's Choice</subject><subject>Female</subject><subject>Genetics</subject><subject>Health risks</subject><subject>Humans</subject><subject>Mammography</subject><subject>Mammography - methods</subject><subject>Mass Screening - methods</subject><subject>Menopause</subject><subject>Minority &amp; ethnic groups</subject><subject>Prediction models</subject><subject>Risk</subject><subject>Screening</subject><subject>Time Factors</subject><issn>0027-8874</issn><issn>1460-2105</issn><issn>1460-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAURi1ERYfCjjWyxAIWhNqOk9gbpDI8WqkVFY-1dce5mXpI7GAnI_Xf18MMFbDAmyvLR0f-7kfIM87ecKbL04237rTdgGVMPSALLmtWCM6qh2TBmGgKpRp5TB6ntGH5aCEfkeOyYqJmXC_IejkPcw-T2yI9a7fgLbb0XURIE13ubpF-cekHvY7YOju54OlVaLGn73GLfRgz7TwF-tVGRO_8ml7BMIR1hPHmll6H8Zc8-CfkqIM-4dPDPCHfP374tjwvLj9_ulieXRZWSjkVgGLFRc1Xuqu4LruuBlZ3Is_SKtCtbrkCLjlraoYSKlCArLWK10rkSFiekLd77zivBmwt-ilCb8boBoi3JoAzf794d2PWYWs0U7ViTRa8Oghi-DljmszgksW-B49hTkbUIi9acM4z-uIfdBPm6HO8TDWVrESldKZe7ykbQ0oRu_vPcGZ2DZpdg-bQYMaf_xngHv5dWQZe7oEwj_9X3QHho6bU</recordid><startdate>20220509</startdate><enddate>20220509</enddate><creator>Kerlikowske, Karla</creator><creator>Chen, Shuai</creator><creator>Golmakani, Marzieh K</creator><creator>Sprague, Brian L</creator><creator>Tice, Jeffrey A</creator><creator>Tosteson, Anna N A</creator><creator>Rauscher, Garth H</creator><creator>Henderson, Louise M</creator><creator>Buist, Diana S M</creator><creator>Lee, Janie M</creator><creator>Gard, Charlotte C</creator><creator>Miglioretti, Diana L</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9857-2028</orcidid><orcidid>https://orcid.org/0000-0001-7201-4450</orcidid><orcidid>https://orcid.org/0000-0001-7718-8943</orcidid><orcidid>https://orcid.org/0000-0002-5547-1833</orcidid><orcidid>https://orcid.org/0000-0001-5408-2804</orcidid><orcidid>https://orcid.org/0000-0001-8793-8779</orcidid><orcidid>https://orcid.org/0000-0002-2111-0773</orcidid><orcidid>https://orcid.org/0000-0002-4016-8217</orcidid><orcidid>https://orcid.org/0000-0002-6452-8168</orcidid></search><sort><creationdate>20220509</creationdate><title>Cumulative Advanced Breast Cancer Risk Prediction Model Developed in a Screening Mammography Population</title><author>Kerlikowske, Karla ; Chen, Shuai ; Golmakani, Marzieh K ; Sprague, Brian L ; Tice, Jeffrey A ; Tosteson, Anna N A ; Rauscher, Garth H ; Henderson, Louise M ; Buist, Diana S M ; Lee, Janie M ; Gard, Charlotte C ; Miglioretti, Diana L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-ae2b1261b9f5193ff6a06f2ff63c8a9d9d18a1410760e4a5a8ae0dc81682026e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biopsy</topic><topic>Body mass</topic><topic>Body mass index</topic><topic>Body size</topic><topic>Breast cancer</topic><topic>Breast Density</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - epidemiology</topic><topic>Confidence intervals</topic><topic>Density</topic><topic>Early Detection of Cancer - methods</topic><topic>Editor's Choice</topic><topic>Female</topic><topic>Genetics</topic><topic>Health risks</topic><topic>Humans</topic><topic>Mammography</topic><topic>Mammography - methods</topic><topic>Mass Screening - methods</topic><topic>Menopause</topic><topic>Minority &amp; ethnic groups</topic><topic>Prediction models</topic><topic>Risk</topic><topic>Screening</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kerlikowske, Karla</creatorcontrib><creatorcontrib>Chen, Shuai</creatorcontrib><creatorcontrib>Golmakani, Marzieh K</creatorcontrib><creatorcontrib>Sprague, Brian L</creatorcontrib><creatorcontrib>Tice, Jeffrey A</creatorcontrib><creatorcontrib>Tosteson, Anna N A</creatorcontrib><creatorcontrib>Rauscher, Garth H</creatorcontrib><creatorcontrib>Henderson, Louise M</creatorcontrib><creatorcontrib>Buist, Diana S M</creatorcontrib><creatorcontrib>Lee, Janie M</creatorcontrib><creatorcontrib>Gard, Charlotte C</creatorcontrib><creatorcontrib>Miglioretti, Diana L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JNCI : Journal of the National Cancer Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kerlikowske, Karla</au><au>Chen, Shuai</au><au>Golmakani, Marzieh K</au><au>Sprague, Brian L</au><au>Tice, Jeffrey A</au><au>Tosteson, Anna N A</au><au>Rauscher, Garth H</au><au>Henderson, Louise M</au><au>Buist, Diana S M</au><au>Lee, Janie M</au><au>Gard, Charlotte C</au><au>Miglioretti, Diana L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cumulative Advanced Breast Cancer Risk Prediction Model Developed in a Screening Mammography Population</atitle><jtitle>JNCI : Journal of the National Cancer Institute</jtitle><addtitle>J Natl Cancer Inst</addtitle><date>2022-05-09</date><risdate>2022</risdate><volume>114</volume><issue>5</issue><spage>676</spage><epage>685</epage><pages>676-685</pages><issn>0027-8874</issn><issn>1460-2105</issn><eissn>1460-2105</eissn><abstract>Abstract Background Estimating advanced breast cancer risk in women undergoing annual or biennial mammography could identify women who may benefit from less or more intensive screening. We developed an actionable model to predict cumulative 6-year advanced cancer (prognostic pathologic stage II or higher) risk according to screening interval. Methods We included 931 186 women aged 40-74 years in the Breast Cancer Surveillance Consortium undergoing 2 542 382 annual (prior mammogram within 11-18 months) or 752 049 biennial (prior within 19-30 months) screening mammograms. The prediction model includes age, race and ethnicity, body mass index, breast density, family history of breast cancer, and prior breast biopsy subdivided by menopausal status and screening interval. We used fivefold cross-validation to internally validate model performance. We defined higher than 95th percentile as high risk (&gt;0.658%), higher than 75th percentile to 95th or less percentile as intermediate risk (0.380%-0.658%), and 75th or less percentile as low to average risk (&lt;0.380%). Results Obesity, high breast density, and proliferative disease with atypia were strongly associated with advanced cancer. The model is well calibrated and has an area under the receiver operating characteristics curve of 0.682 (95% confidence interval = 0.670 to 0.694). Based on women’s predicted advanced cancer risk under annual and biennial screening, 69.1% had low or average risk regardless of screening interval, 12.4% intermediate risk with biennial screening and average risk with annual screening, and 17.4% intermediate or high risk regardless of screening interval. Conclusion Most women have low or average advanced cancer risk and can undergo biennial screening. Intermediate-risk women may consider annual screening, and high-risk women may consider supplemental imaging in addition to annual screening.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>35026019</pmid><doi>10.1093/jnci/djac008</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9857-2028</orcidid><orcidid>https://orcid.org/0000-0001-7201-4450</orcidid><orcidid>https://orcid.org/0000-0001-7718-8943</orcidid><orcidid>https://orcid.org/0000-0002-5547-1833</orcidid><orcidid>https://orcid.org/0000-0001-5408-2804</orcidid><orcidid>https://orcid.org/0000-0001-8793-8779</orcidid><orcidid>https://orcid.org/0000-0002-2111-0773</orcidid><orcidid>https://orcid.org/0000-0002-4016-8217</orcidid><orcidid>https://orcid.org/0000-0002-6452-8168</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8874
ispartof JNCI : Journal of the National Cancer Institute, 2022-05, Vol.114 (5), p.676-685
issn 0027-8874
1460-2105
1460-2105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9086807
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Biopsy
Body mass
Body mass index
Body size
Breast cancer
Breast Density
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - epidemiology
Confidence intervals
Density
Early Detection of Cancer - methods
Editor's Choice
Female
Genetics
Health risks
Humans
Mammography
Mammography - methods
Mass Screening - methods
Menopause
Minority & ethnic groups
Prediction models
Risk
Screening
Time Factors
title Cumulative Advanced Breast Cancer Risk Prediction Model Developed in a Screening Mammography Population
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cumulative%20Advanced%20Breast%20Cancer%20Risk%20Prediction%20Model%20Developed%20in%20a%20Screening%20Mammography%20Population&rft.jtitle=JNCI%20:%20Journal%20of%20the%20National%20Cancer%20Institute&rft.au=Kerlikowske,%20Karla&rft.date=2022-05-09&rft.volume=114&rft.issue=5&rft.spage=676&rft.epage=685&rft.pages=676-685&rft.issn=0027-8874&rft.eissn=1460-2105&rft_id=info:doi/10.1093/jnci/djac008&rft_dat=%3Cproquest_pubme%3E2620082111%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675452589&rft_id=info:pmid/35026019&rft_oup_id=10.1093/jnci/djac008&rfr_iscdi=true