The enhanced osteogenesis and osteointegration of 3-DP PCL scaffolds via structural and functional optimization using collagen networks

Optimal balance between biological activity and mechanical stability should be meticulously considered during scaffold design for bone tissue engineering applications. To fabricate an individualized construct with biomechanical and biological functionality for bone tissue regeneration, a polycaprola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2018-01, Vol.8 (56), p.32304-32316
Hauptverfasser: Wang, Jinbing, Lin, Chucheng, Gao, Xin, Zheng, Zhiwei, Lv, Mimgming, Sun, Jian, Zhang, Zhiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32316
container_issue 56
container_start_page 32304
container_title RSC advances
container_volume 8
creator Wang, Jinbing
Lin, Chucheng
Gao, Xin
Zheng, Zhiwei
Lv, Mimgming
Sun, Jian
Zhang, Zhiyong
description Optimal balance between biological activity and mechanical stability should be meticulously considered during scaffold design for bone tissue engineering applications. To fabricate an individualized construct with biomechanical and biological functionality for bone tissue regeneration, a polycaprolactone-collagen (PCL-COL) composite construct was developed through the combination of three-dimensional printing (3-DP) technology and biomimetic collagen matrix incorporation, with a 3-DP PCL framework maintaining the mechanical stability and a porous collagen matrix improving the biological activity. The results indicate that the compressive modulus of the composite constructs increased synergistically (over 40 MPa), providing sufficient mechanical support during new bone formation. On the other hand, the collagen matrix with a micro-porous architecture structurally increased scaffold areas and provided cellular adhesion sites, allowing for the functional construction of a favorable 3D microenvironment for BMSC adhesion, proliferation and extracellular matrix production. Moreover, critical-sized long bone defect (CSD) implantation demonstrated that the optimized composite constructs could promote bone tissue regeneration (5.5-fold) and bone-material osteointegration (4.7-fold), and decrease fibrosis encapsulation, compared to pristine PCL. The results indicate that these biomimetically ornamented PCL-COL constructs exhibit favorable mechanical properties and biological functionality, demonstrating great potential as an effective bone graft substitute for bone defect treatment. Meanwhile, they can also harness the advantages of 3-DP technology and a collagen-based functionalized strategy, facilitating the creation of customized and functional PCL-COL constructs for clinical translation.
doi_str_mv 10.1039/c8ra05615c
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9086255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664794367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-9daaac4e44ac8ed85e24f52bd390ed2748ab9d04d35005341ca0817dedefe7ea3</originalsourceid><addsrcrecordid>eNpdkd9qFDEUxoMottTe-AAS8EaE0fyfzI1QxqqFBYvU6yGbnNlNnU3WJNPSvoCvbdrdlmpukpP8zpcv-RB6TckHSnj30epkiFRU2mfokBGhGkZU9_zJ-gAd53xJ6lCSMkVfogMupWglI4foz8UaMIS1CRYcjrlAXEGA7DM2Yb_hQ4FVMsXHgOOIefP5HJ_3C5ytGcc4uYyvvMG5pNmWOZnpvnOcg73rqGXcFr_xtzuBOfuwwjZOk6kX4QDlOqZf-RV6MZopw_F-PkI_v5xe9N-axfevZ_3JorGCqNJ0zhhjBQhhrAanJTAxSrZ0vCPgWCu0WXaOCMclIZILag3RtHXgYIQWDD9Cn3a623m5AWchlOp42Ca_MelmiMYP_54Evx5W8WroiFZMyirwbi-Q4u8Zchk2PluozwkQ5zwwpUTbCa7air79D72Mc6o_UilKtOZcMFap9zvKpphzgvHRDCXDXcRDr3-c3EfcV_jNU_uP6EOg_C8xjaVM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108833422</pqid></control><display><type>article</type><title>The enhanced osteogenesis and osteointegration of 3-DP PCL scaffolds via structural and functional optimization using collagen networks</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Wang, Jinbing ; Lin, Chucheng ; Gao, Xin ; Zheng, Zhiwei ; Lv, Mimgming ; Sun, Jian ; Zhang, Zhiyong</creator><creatorcontrib>Wang, Jinbing ; Lin, Chucheng ; Gao, Xin ; Zheng, Zhiwei ; Lv, Mimgming ; Sun, Jian ; Zhang, Zhiyong</creatorcontrib><description>Optimal balance between biological activity and mechanical stability should be meticulously considered during scaffold design for bone tissue engineering applications. To fabricate an individualized construct with biomechanical and biological functionality for bone tissue regeneration, a polycaprolactone-collagen (PCL-COL) composite construct was developed through the combination of three-dimensional printing (3-DP) technology and biomimetic collagen matrix incorporation, with a 3-DP PCL framework maintaining the mechanical stability and a porous collagen matrix improving the biological activity. The results indicate that the compressive modulus of the composite constructs increased synergistically (over 40 MPa), providing sufficient mechanical support during new bone formation. On the other hand, the collagen matrix with a micro-porous architecture structurally increased scaffold areas and provided cellular adhesion sites, allowing for the functional construction of a favorable 3D microenvironment for BMSC adhesion, proliferation and extracellular matrix production. Moreover, critical-sized long bone defect (CSD) implantation demonstrated that the optimized composite constructs could promote bone tissue regeneration (5.5-fold) and bone-material osteointegration (4.7-fold), and decrease fibrosis encapsulation, compared to pristine PCL. The results indicate that these biomimetically ornamented PCL-COL constructs exhibit favorable mechanical properties and biological functionality, demonstrating great potential as an effective bone graft substitute for bone defect treatment. Meanwhile, they can also harness the advantages of 3-DP technology and a collagen-based functionalized strategy, facilitating the creation of customized and functional PCL-COL constructs for clinical translation.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c8ra05615c</identifier><identifier>PMID: 35547520</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adhesion ; Biocompatibility ; Biological activity ; Biological effects ; Biological properties ; Biomechanical engineering ; Biomechanics ; Biomedical materials ; Biomimetics ; Bones ; Cellular structure ; Chemistry ; Collagen ; Design engineering ; Fibrosis ; Grafting ; Implantation ; Mechanical properties ; Modulus of elasticity ; Polycaprolactone ; Porous media ; Regeneration ; Scaffolds ; Stability ; Substitute bone ; Three dimensional printing ; Tissue engineering</subject><ispartof>RSC advances, 2018-01, Vol.8 (56), p.32304-32316</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2018</rights><rights>This journal is © The Royal Society of Chemistry 2018 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-9daaac4e44ac8ed85e24f52bd390ed2748ab9d04d35005341ca0817dedefe7ea3</citedby><cites>FETCH-LOGICAL-c406t-9daaac4e44ac8ed85e24f52bd390ed2748ab9d04d35005341ca0817dedefe7ea3</cites><orcidid>0000-0001-8433-7265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9086255/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9086255/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35547520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jinbing</creatorcontrib><creatorcontrib>Lin, Chucheng</creatorcontrib><creatorcontrib>Gao, Xin</creatorcontrib><creatorcontrib>Zheng, Zhiwei</creatorcontrib><creatorcontrib>Lv, Mimgming</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Zhang, Zhiyong</creatorcontrib><title>The enhanced osteogenesis and osteointegration of 3-DP PCL scaffolds via structural and functional optimization using collagen networks</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Optimal balance between biological activity and mechanical stability should be meticulously considered during scaffold design for bone tissue engineering applications. To fabricate an individualized construct with biomechanical and biological functionality for bone tissue regeneration, a polycaprolactone-collagen (PCL-COL) composite construct was developed through the combination of three-dimensional printing (3-DP) technology and biomimetic collagen matrix incorporation, with a 3-DP PCL framework maintaining the mechanical stability and a porous collagen matrix improving the biological activity. The results indicate that the compressive modulus of the composite constructs increased synergistically (over 40 MPa), providing sufficient mechanical support during new bone formation. On the other hand, the collagen matrix with a micro-porous architecture structurally increased scaffold areas and provided cellular adhesion sites, allowing for the functional construction of a favorable 3D microenvironment for BMSC adhesion, proliferation and extracellular matrix production. Moreover, critical-sized long bone defect (CSD) implantation demonstrated that the optimized composite constructs could promote bone tissue regeneration (5.5-fold) and bone-material osteointegration (4.7-fold), and decrease fibrosis encapsulation, compared to pristine PCL. The results indicate that these biomimetically ornamented PCL-COL constructs exhibit favorable mechanical properties and biological functionality, demonstrating great potential as an effective bone graft substitute for bone defect treatment. Meanwhile, they can also harness the advantages of 3-DP technology and a collagen-based functionalized strategy, facilitating the creation of customized and functional PCL-COL constructs for clinical translation.</description><subject>Adhesion</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biological effects</subject><subject>Biological properties</subject><subject>Biomechanical engineering</subject><subject>Biomechanics</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>Bones</subject><subject>Cellular structure</subject><subject>Chemistry</subject><subject>Collagen</subject><subject>Design engineering</subject><subject>Fibrosis</subject><subject>Grafting</subject><subject>Implantation</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Polycaprolactone</subject><subject>Porous media</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Stability</subject><subject>Substitute bone</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkd9qFDEUxoMottTe-AAS8EaE0fyfzI1QxqqFBYvU6yGbnNlNnU3WJNPSvoCvbdrdlmpukpP8zpcv-RB6TckHSnj30epkiFRU2mfokBGhGkZU9_zJ-gAd53xJ6lCSMkVfogMupWglI4foz8UaMIS1CRYcjrlAXEGA7DM2Yb_hQ4FVMsXHgOOIefP5HJ_3C5ytGcc4uYyvvMG5pNmWOZnpvnOcg73rqGXcFr_xtzuBOfuwwjZOk6kX4QDlOqZf-RV6MZopw_F-PkI_v5xe9N-axfevZ_3JorGCqNJ0zhhjBQhhrAanJTAxSrZ0vCPgWCu0WXaOCMclIZILag3RtHXgYIQWDD9Cn3a623m5AWchlOp42Ca_MelmiMYP_54Evx5W8WroiFZMyirwbi-Q4u8Zchk2PluozwkQ5zwwpUTbCa7air79D72Mc6o_UilKtOZcMFap9zvKpphzgvHRDCXDXcRDr3-c3EfcV_jNU_uP6EOg_C8xjaVM</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wang, Jinbing</creator><creator>Lin, Chucheng</creator><creator>Gao, Xin</creator><creator>Zheng, Zhiwei</creator><creator>Lv, Mimgming</creator><creator>Sun, Jian</creator><creator>Zhang, Zhiyong</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8433-7265</orcidid></search><sort><creationdate>20180101</creationdate><title>The enhanced osteogenesis and osteointegration of 3-DP PCL scaffolds via structural and functional optimization using collagen networks</title><author>Wang, Jinbing ; Lin, Chucheng ; Gao, Xin ; Zheng, Zhiwei ; Lv, Mimgming ; Sun, Jian ; Zhang, Zhiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-9daaac4e44ac8ed85e24f52bd390ed2748ab9d04d35005341ca0817dedefe7ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adhesion</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biological effects</topic><topic>Biological properties</topic><topic>Biomechanical engineering</topic><topic>Biomechanics</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>Bones</topic><topic>Cellular structure</topic><topic>Chemistry</topic><topic>Collagen</topic><topic>Design engineering</topic><topic>Fibrosis</topic><topic>Grafting</topic><topic>Implantation</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Polycaprolactone</topic><topic>Porous media</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Stability</topic><topic>Substitute bone</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jinbing</creatorcontrib><creatorcontrib>Lin, Chucheng</creatorcontrib><creatorcontrib>Gao, Xin</creatorcontrib><creatorcontrib>Zheng, Zhiwei</creatorcontrib><creatorcontrib>Lv, Mimgming</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Zhang, Zhiyong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jinbing</au><au>Lin, Chucheng</au><au>Gao, Xin</au><au>Zheng, Zhiwei</au><au>Lv, Mimgming</au><au>Sun, Jian</au><au>Zhang, Zhiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The enhanced osteogenesis and osteointegration of 3-DP PCL scaffolds via structural and functional optimization using collagen networks</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>8</volume><issue>56</issue><spage>32304</spage><epage>32316</epage><pages>32304-32316</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Optimal balance between biological activity and mechanical stability should be meticulously considered during scaffold design for bone tissue engineering applications. To fabricate an individualized construct with biomechanical and biological functionality for bone tissue regeneration, a polycaprolactone-collagen (PCL-COL) composite construct was developed through the combination of three-dimensional printing (3-DP) technology and biomimetic collagen matrix incorporation, with a 3-DP PCL framework maintaining the mechanical stability and a porous collagen matrix improving the biological activity. The results indicate that the compressive modulus of the composite constructs increased synergistically (over 40 MPa), providing sufficient mechanical support during new bone formation. On the other hand, the collagen matrix with a micro-porous architecture structurally increased scaffold areas and provided cellular adhesion sites, allowing for the functional construction of a favorable 3D microenvironment for BMSC adhesion, proliferation and extracellular matrix production. Moreover, critical-sized long bone defect (CSD) implantation demonstrated that the optimized composite constructs could promote bone tissue regeneration (5.5-fold) and bone-material osteointegration (4.7-fold), and decrease fibrosis encapsulation, compared to pristine PCL. The results indicate that these biomimetically ornamented PCL-COL constructs exhibit favorable mechanical properties and biological functionality, demonstrating great potential as an effective bone graft substitute for bone defect treatment. Meanwhile, they can also harness the advantages of 3-DP technology and a collagen-based functionalized strategy, facilitating the creation of customized and functional PCL-COL constructs for clinical translation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35547520</pmid><doi>10.1039/c8ra05615c</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8433-7265</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2018-01, Vol.8 (56), p.32304-32316
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9086255
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Adhesion
Biocompatibility
Biological activity
Biological effects
Biological properties
Biomechanical engineering
Biomechanics
Biomedical materials
Biomimetics
Bones
Cellular structure
Chemistry
Collagen
Design engineering
Fibrosis
Grafting
Implantation
Mechanical properties
Modulus of elasticity
Polycaprolactone
Porous media
Regeneration
Scaffolds
Stability
Substitute bone
Three dimensional printing
Tissue engineering
title The enhanced osteogenesis and osteointegration of 3-DP PCL scaffolds via structural and functional optimization using collagen networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20enhanced%20osteogenesis%20and%20osteointegration%20of%203-DP%20PCL%20scaffolds%20via%20structural%20and%20functional%20optimization%20using%20collagen%20networks&rft.jtitle=RSC%20advances&rft.au=Wang,%20Jinbing&rft.date=2018-01-01&rft.volume=8&rft.issue=56&rft.spage=32304&rft.epage=32316&rft.pages=32304-32316&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c8ra05615c&rft_dat=%3Cproquest_pubme%3E2664794367%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2108833422&rft_id=info:pmid/35547520&rfr_iscdi=true