Structure of the poxvirus decapping enzyme D9 reveals its mechanism of cap recognition and catalysis
Poxviruses encode decapping enzymes that remove the protective 5′ cap from both host and viral mRNAs to commit transcripts for decay by the cellular exonuclease Xrn1. Decapping by these enzymes is critical for poxvirus pathogenicity by means of simultaneously suppressing host protein synthesis and l...
Gespeichert in:
Veröffentlicht in: | Structure (London) 2022-05, Vol.30 (5), p.721-732.e4 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 732.e4 |
---|---|
container_issue | 5 |
container_start_page | 721 |
container_title | Structure (London) |
container_volume | 30 |
creator | Peters, Jessica K. Tibble, Ryan W. Warminski, Marcin Jemielity, Jacek Gross, John D. |
description | Poxviruses encode decapping enzymes that remove the protective 5′ cap from both host and viral mRNAs to commit transcripts for decay by the cellular exonuclease Xrn1. Decapping by these enzymes is critical for poxvirus pathogenicity by means of simultaneously suppressing host protein synthesis and limiting the accumulation of viral double-stranded RNA (dsRNA), a trigger for antiviral responses. Here we present a high-resolution structural view of the vaccinia virus decapping enzyme D9. This Nudix enzyme contains a domain organization different from other decapping enzymes in which a three-helix bundle is inserted into the catalytic Nudix domain. The 5′ mRNA cap is positioned in a bipartite active site at the interface of the two domains. Specificity for the methylated guanosine cap is achieved by stacking between conserved aromatic residues in a manner similar to that observed in canonical cap-binding proteins VP39, eIF4E, and CBP20, and distinct from eukaryotic decapping enzyme Dcp2.
[Display omitted]
•VACV D9 contains an α-helical domain inserted within the Nudix domain•Conserved aromatic residues recognize the mRNA cap by π-π stacking•D9 recognizes the mRNA cap during the catalytic step•D9 is not selective for first-transcribed nucleotide identity or cap accessibility
Peters et al. present the crystal structure of a vaccinia virus decapping enzyme in the post-catalytic conformation. The authors demonstrate that the mode of RNA binding and cap recognition are different than for eukaryotic decapping enzyme Dcp2, suggesting D9 could be a potential antiviral therapeutic target. |
doi_str_mv | 10.1016/j.str.2022.02.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9081138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096921262200048X</els_id><sourcerecordid>2640047655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-a3606077cfde9b782e72f0df6b61046e109720b288a45064184edae55c5372403</originalsourceid><addsrcrecordid>eNp9UU2LFDEUDKK4s6s_wIsET156fEl3J2kEYVnXD1jwoJ5DJv16JkN3MibpwfHXm2bWRS_Cg0BeVaUqRcgLBmsGTLzZr1OOaw6cr6EM44_IiimpqoYp8ZisoBNdxRkXF-QypT0A8BbgKbmoW96B7JoV6b_mONs8R6RhoHmH9BB-Hl2cE-3RmsPB-S1F_-s0IX3f0YhHNGOiLic6od0Z79K0MAu0LG3Yepdd8NT4vtxlM56SS8_Ik6Gw8Pn9eUW-f7j9dvOpuvvy8fPN9V1lG6lyZWoBAqS0Q4_dRiqOkg_QD2IjGDQCGXSSw4YrZZoWRAnZYG-wbW1bS95AfUXenXUP82bC3qLP0Yz6EN1k4kkH4_S_G-92ehuOugPFWK2KwKuzQEjZ6WRdLhlt8B5t1qxTTIqugF7fvxLDjxlT1pNLFsfReAxz0lw0AI0UbVug7Ay1MaQUcXjwwkAvFeq9LhXqpUINZRgvnJd_h3hg_OmsAN6eAVi-8ugwLkbRW-xdXHz2wf1H_jdzwa12</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640047655</pqid></control><display><type>article</type><title>Structure of the poxvirus decapping enzyme D9 reveals its mechanism of cap recognition and catalysis</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Peters, Jessica K. ; Tibble, Ryan W. ; Warminski, Marcin ; Jemielity, Jacek ; Gross, John D.</creator><creatorcontrib>Peters, Jessica K. ; Tibble, Ryan W. ; Warminski, Marcin ; Jemielity, Jacek ; Gross, John D. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</creatorcontrib><description>Poxviruses encode decapping enzymes that remove the protective 5′ cap from both host and viral mRNAs to commit transcripts for decay by the cellular exonuclease Xrn1. Decapping by these enzymes is critical for poxvirus pathogenicity by means of simultaneously suppressing host protein synthesis and limiting the accumulation of viral double-stranded RNA (dsRNA), a trigger for antiviral responses. Here we present a high-resolution structural view of the vaccinia virus decapping enzyme D9. This Nudix enzyme contains a domain organization different from other decapping enzymes in which a three-helix bundle is inserted into the catalytic Nudix domain. The 5′ mRNA cap is positioned in a bipartite active site at the interface of the two domains. Specificity for the methylated guanosine cap is achieved by stacking between conserved aromatic residues in a manner similar to that observed in canonical cap-binding proteins VP39, eIF4E, and CBP20, and distinct from eukaryotic decapping enzyme Dcp2.
[Display omitted]
•VACV D9 contains an α-helical domain inserted within the Nudix domain•Conserved aromatic residues recognize the mRNA cap by π-π stacking•D9 recognizes the mRNA cap during the catalytic step•D9 is not selective for first-transcribed nucleotide identity or cap accessibility
Peters et al. present the crystal structure of a vaccinia virus decapping enzyme in the post-catalytic conformation. The authors demonstrate that the mode of RNA binding and cap recognition are different than for eukaryotic decapping enzyme Dcp2, suggesting D9 could be a potential antiviral therapeutic target.</description><identifier>ISSN: 0969-2126</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/j.str.2022.02.012</identifier><identifier>PMID: 35290794</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Biochemistry & molecular biology ; Biophysics ; Cap recognition ; Catalysis ; Cell biology ; dsRNA decay ; Endoribonucleases - chemistry ; Endoribonucleases - genetics ; Endoribonucleases - metabolism ; Host shutoff ; Innate immunity ; mRNA decay ; Poxviridae - genetics ; Poxviridae - metabolism ; Poxvirus decapping enzyme D9 ; RNA Caps - metabolism ; RNA, Double-Stranded ; RNA, Messenger - metabolism ; Vaccinia virus - genetics ; Viral Proteins - metabolism ; Virus-host interactions</subject><ispartof>Structure (London), 2022-05, Vol.30 (5), p.721-732.e4</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-a3606077cfde9b782e72f0df6b61046e109720b288a45064184edae55c5372403</citedby><cites>FETCH-LOGICAL-c478t-a3606077cfde9b782e72f0df6b61046e109720b288a45064184edae55c5372403</cites><orcidid>0000-0003-3541-7431 ; 0000-0002-4188-3116 ; 0000-0001-7633-788X ; 0000-0002-1377-4705 ; 0000000335417431 ; 000000017633788X ; 0000000241883116 ; 0000000213774705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.str.2022.02.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35290794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1981769$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Peters, Jessica K.</creatorcontrib><creatorcontrib>Tibble, Ryan W.</creatorcontrib><creatorcontrib>Warminski, Marcin</creatorcontrib><creatorcontrib>Jemielity, Jacek</creatorcontrib><creatorcontrib>Gross, John D.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</creatorcontrib><title>Structure of the poxvirus decapping enzyme D9 reveals its mechanism of cap recognition and catalysis</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>Poxviruses encode decapping enzymes that remove the protective 5′ cap from both host and viral mRNAs to commit transcripts for decay by the cellular exonuclease Xrn1. Decapping by these enzymes is critical for poxvirus pathogenicity by means of simultaneously suppressing host protein synthesis and limiting the accumulation of viral double-stranded RNA (dsRNA), a trigger for antiviral responses. Here we present a high-resolution structural view of the vaccinia virus decapping enzyme D9. This Nudix enzyme contains a domain organization different from other decapping enzymes in which a three-helix bundle is inserted into the catalytic Nudix domain. The 5′ mRNA cap is positioned in a bipartite active site at the interface of the two domains. Specificity for the methylated guanosine cap is achieved by stacking between conserved aromatic residues in a manner similar to that observed in canonical cap-binding proteins VP39, eIF4E, and CBP20, and distinct from eukaryotic decapping enzyme Dcp2.
[Display omitted]
•VACV D9 contains an α-helical domain inserted within the Nudix domain•Conserved aromatic residues recognize the mRNA cap by π-π stacking•D9 recognizes the mRNA cap during the catalytic step•D9 is not selective for first-transcribed nucleotide identity or cap accessibility
Peters et al. present the crystal structure of a vaccinia virus decapping enzyme in the post-catalytic conformation. The authors demonstrate that the mode of RNA binding and cap recognition are different than for eukaryotic decapping enzyme Dcp2, suggesting D9 could be a potential antiviral therapeutic target.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry & molecular biology</subject><subject>Biophysics</subject><subject>Cap recognition</subject><subject>Catalysis</subject><subject>Cell biology</subject><subject>dsRNA decay</subject><subject>Endoribonucleases - chemistry</subject><subject>Endoribonucleases - genetics</subject><subject>Endoribonucleases - metabolism</subject><subject>Host shutoff</subject><subject>Innate immunity</subject><subject>mRNA decay</subject><subject>Poxviridae - genetics</subject><subject>Poxviridae - metabolism</subject><subject>Poxvirus decapping enzyme D9</subject><subject>RNA Caps - metabolism</subject><subject>RNA, Double-Stranded</subject><subject>RNA, Messenger - metabolism</subject><subject>Vaccinia virus - genetics</subject><subject>Viral Proteins - metabolism</subject><subject>Virus-host interactions</subject><issn>0969-2126</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU2LFDEUDKK4s6s_wIsET156fEl3J2kEYVnXD1jwoJ5DJv16JkN3MibpwfHXm2bWRS_Cg0BeVaUqRcgLBmsGTLzZr1OOaw6cr6EM44_IiimpqoYp8ZisoBNdxRkXF-QypT0A8BbgKbmoW96B7JoV6b_mONs8R6RhoHmH9BB-Hl2cE-3RmsPB-S1F_-s0IX3f0YhHNGOiLic6od0Z79K0MAu0LG3Yepdd8NT4vtxlM56SS8_Ik6Gw8Pn9eUW-f7j9dvOpuvvy8fPN9V1lG6lyZWoBAqS0Q4_dRiqOkg_QD2IjGDQCGXSSw4YrZZoWRAnZYG-wbW1bS95AfUXenXUP82bC3qLP0Yz6EN1k4kkH4_S_G-92ehuOugPFWK2KwKuzQEjZ6WRdLhlt8B5t1qxTTIqugF7fvxLDjxlT1pNLFsfReAxz0lw0AI0UbVug7Ay1MaQUcXjwwkAvFeq9LhXqpUINZRgvnJd_h3hg_OmsAN6eAVi-8ugwLkbRW-xdXHz2wf1H_jdzwa12</recordid><startdate>20220505</startdate><enddate>20220505</enddate><creator>Peters, Jessica K.</creator><creator>Tibble, Ryan W.</creator><creator>Warminski, Marcin</creator><creator>Jemielity, Jacek</creator><creator>Gross, John D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3541-7431</orcidid><orcidid>https://orcid.org/0000-0002-4188-3116</orcidid><orcidid>https://orcid.org/0000-0001-7633-788X</orcidid><orcidid>https://orcid.org/0000-0002-1377-4705</orcidid><orcidid>https://orcid.org/0000000335417431</orcidid><orcidid>https://orcid.org/000000017633788X</orcidid><orcidid>https://orcid.org/0000000241883116</orcidid><orcidid>https://orcid.org/0000000213774705</orcidid></search><sort><creationdate>20220505</creationdate><title>Structure of the poxvirus decapping enzyme D9 reveals its mechanism of cap recognition and catalysis</title><author>Peters, Jessica K. ; Tibble, Ryan W. ; Warminski, Marcin ; Jemielity, Jacek ; Gross, John D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-a3606077cfde9b782e72f0df6b61046e109720b288a45064184edae55c5372403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry & molecular biology</topic><topic>Biophysics</topic><topic>Cap recognition</topic><topic>Catalysis</topic><topic>Cell biology</topic><topic>dsRNA decay</topic><topic>Endoribonucleases - chemistry</topic><topic>Endoribonucleases - genetics</topic><topic>Endoribonucleases - metabolism</topic><topic>Host shutoff</topic><topic>Innate immunity</topic><topic>mRNA decay</topic><topic>Poxviridae - genetics</topic><topic>Poxviridae - metabolism</topic><topic>Poxvirus decapping enzyme D9</topic><topic>RNA Caps - metabolism</topic><topic>RNA, Double-Stranded</topic><topic>RNA, Messenger - metabolism</topic><topic>Vaccinia virus - genetics</topic><topic>Viral Proteins - metabolism</topic><topic>Virus-host interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peters, Jessica K.</creatorcontrib><creatorcontrib>Tibble, Ryan W.</creatorcontrib><creatorcontrib>Warminski, Marcin</creatorcontrib><creatorcontrib>Jemielity, Jacek</creatorcontrib><creatorcontrib>Gross, John D.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peters, Jessica K.</au><au>Tibble, Ryan W.</au><au>Warminski, Marcin</au><au>Jemielity, Jacek</au><au>Gross, John D.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the poxvirus decapping enzyme D9 reveals its mechanism of cap recognition and catalysis</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>2022-05-05</date><risdate>2022</risdate><volume>30</volume><issue>5</issue><spage>721</spage><epage>732.e4</epage><pages>721-732.e4</pages><issn>0969-2126</issn><eissn>1878-4186</eissn><abstract>Poxviruses encode decapping enzymes that remove the protective 5′ cap from both host and viral mRNAs to commit transcripts for decay by the cellular exonuclease Xrn1. Decapping by these enzymes is critical for poxvirus pathogenicity by means of simultaneously suppressing host protein synthesis and limiting the accumulation of viral double-stranded RNA (dsRNA), a trigger for antiviral responses. Here we present a high-resolution structural view of the vaccinia virus decapping enzyme D9. This Nudix enzyme contains a domain organization different from other decapping enzymes in which a three-helix bundle is inserted into the catalytic Nudix domain. The 5′ mRNA cap is positioned in a bipartite active site at the interface of the two domains. Specificity for the methylated guanosine cap is achieved by stacking between conserved aromatic residues in a manner similar to that observed in canonical cap-binding proteins VP39, eIF4E, and CBP20, and distinct from eukaryotic decapping enzyme Dcp2.
[Display omitted]
•VACV D9 contains an α-helical domain inserted within the Nudix domain•Conserved aromatic residues recognize the mRNA cap by π-π stacking•D9 recognizes the mRNA cap during the catalytic step•D9 is not selective for first-transcribed nucleotide identity or cap accessibility
Peters et al. present the crystal structure of a vaccinia virus decapping enzyme in the post-catalytic conformation. The authors demonstrate that the mode of RNA binding and cap recognition are different than for eukaryotic decapping enzyme Dcp2, suggesting D9 could be a potential antiviral therapeutic target.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>35290794</pmid><doi>10.1016/j.str.2022.02.012</doi><orcidid>https://orcid.org/0000-0003-3541-7431</orcidid><orcidid>https://orcid.org/0000-0002-4188-3116</orcidid><orcidid>https://orcid.org/0000-0001-7633-788X</orcidid><orcidid>https://orcid.org/0000-0002-1377-4705</orcidid><orcidid>https://orcid.org/0000000335417431</orcidid><orcidid>https://orcid.org/000000017633788X</orcidid><orcidid>https://orcid.org/0000000241883116</orcidid><orcidid>https://orcid.org/0000000213774705</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-2126 |
ispartof | Structure (London), 2022-05, Vol.30 (5), p.721-732.e4 |
issn | 0969-2126 1878-4186 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9081138 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | BASIC BIOLOGICAL SCIENCES Biochemistry & molecular biology Biophysics Cap recognition Catalysis Cell biology dsRNA decay Endoribonucleases - chemistry Endoribonucleases - genetics Endoribonucleases - metabolism Host shutoff Innate immunity mRNA decay Poxviridae - genetics Poxviridae - metabolism Poxvirus decapping enzyme D9 RNA Caps - metabolism RNA, Double-Stranded RNA, Messenger - metabolism Vaccinia virus - genetics Viral Proteins - metabolism Virus-host interactions |
title | Structure of the poxvirus decapping enzyme D9 reveals its mechanism of cap recognition and catalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T03%3A47%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%20poxvirus%20decapping%20enzyme%20D9%20reveals%20its%20mechanism%20of%20cap%20recognition%20and%20catalysis&rft.jtitle=Structure%20(London)&rft.au=Peters,%20Jessica%20K.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20Advanced%20Light%20Source%20(ALS)&rft.date=2022-05-05&rft.volume=30&rft.issue=5&rft.spage=721&rft.epage=732.e4&rft.pages=721-732.e4&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/j.str.2022.02.012&rft_dat=%3Cproquest_pubme%3E2640047655%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640047655&rft_id=info:pmid/35290794&rft_els_id=S096921262200048X&rfr_iscdi=true |