Camera fusion for real-time temperature monitoring of neonates using deep learning

The continuous monitoring of vital signs is a crucial aspect of medical care in neonatal intensive care units. Since cable-based sensors pose a potential risk for the immature skin of preterm infants, unobtrusive monitoring techniques using camera systems are increasingly investigated. The combinati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2022-06, Vol.60 (6), p.1787-1800
Hauptverfasser: Lyra, Simon, Rixen, Jöran, Heimann, Konrad, Karthik, Srinivasa, Joseph, Jayaraj, Jayaraman, Kumutha, Orlikowsky, Thorsten, Sivaprakasam, Mohanasankar, Leonhardt, Steffen, Hoog Antink, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1800
container_issue 6
container_start_page 1787
container_title Medical & biological engineering & computing
container_volume 60
creator Lyra, Simon
Rixen, Jöran
Heimann, Konrad
Karthik, Srinivasa
Joseph, Jayaraj
Jayaraman, Kumutha
Orlikowsky, Thorsten
Sivaprakasam, Mohanasankar
Leonhardt, Steffen
Hoog Antink, Christoph
description The continuous monitoring of vital signs is a crucial aspect of medical care in neonatal intensive care units. Since cable-based sensors pose a potential risk for the immature skin of preterm infants, unobtrusive monitoring techniques using camera systems are increasingly investigated. The combination of deep learning–based algorithms and camera modalities such as RGB and infrared thermography can improve the development of cable-free methods for the extraction of vital parameters. In this study, a real-time approach for local extraction of temperatures on the body surface of neonates using a multi-modal clinical dataset was implemented. Therefore, a trained deep learning–based keypoint detector was used for body landmark prediction in RGB. Image registration was conducted to transfer the RGB points to the corresponding thermographic recordings. These landmarks were used to extract the body surface temperature in various regions to determine the central-peripheral temperature difference. A validation of the keypoint detector showed a mean average precision of 0.82. The registration resulted in mean absolute errors of 16.4 px (8.2 mm) for x and 22.4 px (11.2 mm) for y . The evaluation of the temperature extraction revealed a mean absolute error of 0.55  ∘ C. A final performance of 31 fps was observed on the NVIDIA Jetson Xavier NX module, which proves real-time capability on an embedded GPU system. As a result, the approach can perform real-time temperature extraction on a low-cost GPU module. Graphical abstract
doi_str_mv 10.1007/s11517-022-02561-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9079037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660493702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-e426b41495f018912d7c3b71babe7000c6e55bc507b2da8f7377f6843ee7b1173</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhi1UBAvtH-ihstQLl8CMP-LNpVK1Kh8SEhKCs-VkJxCU2KmdIPXf42WBthw4WJY9z_uOxy9jXxGOEcCcJESNpgAh8tIlFtUOW6BRWIBS6hNbACooAHG5zw5SegAQqIXaY_tSa8hSvWDXKzdQdLydUxc8b0PkkVxfTN1AfKJhzMVpjsSH4LspxM7f8dByT8G7iRLPsnyzJhp5Ty76fPrMdlvXJ_rysh-y29NfN6vz4vLq7GL187JotIKpICXKWqGqdAu4rFCsTSNrg7WryQBAU5LWdaPB1GLtlq2RxrTlUkkiUyMaech-bH3HuR5o3ZCfouvtGLvBxT82uM7-X_Hdvb0Lj7YCU4HcGBy9GMTwe6Y02aFLDfW9y-PNyYpSVyUII1VGv79DH8IcfR4vUyWoShoQmRJbqokhpUjt22MQ7CYyu43M5sjsc2S2yqJv_47xJnnNKANyC6Rx8_0U__b-wPYJpAiiDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660493702</pqid></control><display><type>article</type><title>Camera fusion for real-time temperature monitoring of neonates using deep learning</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Lyra, Simon ; Rixen, Jöran ; Heimann, Konrad ; Karthik, Srinivasa ; Joseph, Jayaraj ; Jayaraman, Kumutha ; Orlikowsky, Thorsten ; Sivaprakasam, Mohanasankar ; Leonhardt, Steffen ; Hoog Antink, Christoph</creator><creatorcontrib>Lyra, Simon ; Rixen, Jöran ; Heimann, Konrad ; Karthik, Srinivasa ; Joseph, Jayaraj ; Jayaraman, Kumutha ; Orlikowsky, Thorsten ; Sivaprakasam, Mohanasankar ; Leonhardt, Steffen ; Hoog Antink, Christoph</creatorcontrib><description>The continuous monitoring of vital signs is a crucial aspect of medical care in neonatal intensive care units. Since cable-based sensors pose a potential risk for the immature skin of preterm infants, unobtrusive monitoring techniques using camera systems are increasingly investigated. The combination of deep learning–based algorithms and camera modalities such as RGB and infrared thermography can improve the development of cable-free methods for the extraction of vital parameters. In this study, a real-time approach for local extraction of temperatures on the body surface of neonates using a multi-modal clinical dataset was implemented. Therefore, a trained deep learning–based keypoint detector was used for body landmark prediction in RGB. Image registration was conducted to transfer the RGB points to the corresponding thermographic recordings. These landmarks were used to extract the body surface temperature in various regions to determine the central-peripheral temperature difference. A validation of the keypoint detector showed a mean average precision of 0.82. The registration resulted in mean absolute errors of 16.4 px (8.2 mm) for x and 22.4 px (11.2 mm) for y . The evaluation of the temperature extraction revealed a mean absolute error of 0.55  ∘ C. A final performance of 31 fps was observed on the NVIDIA Jetson Xavier NX module, which proves real-time capability on an embedded GPU system. As a result, the approach can perform real-time temperature extraction on a low-cost GPU module. Graphical abstract</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-022-02561-9</identifier><identifier>PMID: 35505175</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Body temperature ; Cameras ; Computer Applications ; Deep learning ; Hospitals ; Human Physiology ; Image registration ; Imaging ; Infrared imaging ; Intensive care units ; Machine learning ; Modules ; Monitoring ; Neonates ; Newborn babies ; Original ; Original Article ; Radiology ; Real time ; Surface temperature ; Telemedicine ; Temperature ; Temperature gradients ; Thermography</subject><ispartof>Medical &amp; biological engineering &amp; computing, 2022-06, Vol.60 (6), p.1787-1800</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-e426b41495f018912d7c3b71babe7000c6e55bc507b2da8f7377f6843ee7b1173</citedby><cites>FETCH-LOGICAL-c540t-e426b41495f018912d7c3b71babe7000c6e55bc507b2da8f7377f6843ee7b1173</cites><orcidid>0000-0002-3842-6897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-022-02561-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-022-02561-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35505175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyra, Simon</creatorcontrib><creatorcontrib>Rixen, Jöran</creatorcontrib><creatorcontrib>Heimann, Konrad</creatorcontrib><creatorcontrib>Karthik, Srinivasa</creatorcontrib><creatorcontrib>Joseph, Jayaraj</creatorcontrib><creatorcontrib>Jayaraman, Kumutha</creatorcontrib><creatorcontrib>Orlikowsky, Thorsten</creatorcontrib><creatorcontrib>Sivaprakasam, Mohanasankar</creatorcontrib><creatorcontrib>Leonhardt, Steffen</creatorcontrib><creatorcontrib>Hoog Antink, Christoph</creatorcontrib><title>Camera fusion for real-time temperature monitoring of neonates using deep learning</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>The continuous monitoring of vital signs is a crucial aspect of medical care in neonatal intensive care units. Since cable-based sensors pose a potential risk for the immature skin of preterm infants, unobtrusive monitoring techniques using camera systems are increasingly investigated. The combination of deep learning–based algorithms and camera modalities such as RGB and infrared thermography can improve the development of cable-free methods for the extraction of vital parameters. In this study, a real-time approach for local extraction of temperatures on the body surface of neonates using a multi-modal clinical dataset was implemented. Therefore, a trained deep learning–based keypoint detector was used for body landmark prediction in RGB. Image registration was conducted to transfer the RGB points to the corresponding thermographic recordings. These landmarks were used to extract the body surface temperature in various regions to determine the central-peripheral temperature difference. A validation of the keypoint detector showed a mean average precision of 0.82. The registration resulted in mean absolute errors of 16.4 px (8.2 mm) for x and 22.4 px (11.2 mm) for y . The evaluation of the temperature extraction revealed a mean absolute error of 0.55  ∘ C. A final performance of 31 fps was observed on the NVIDIA Jetson Xavier NX module, which proves real-time capability on an embedded GPU system. As a result, the approach can perform real-time temperature extraction on a low-cost GPU module. Graphical abstract</description><subject>Algorithms</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Body temperature</subject><subject>Cameras</subject><subject>Computer Applications</subject><subject>Deep learning</subject><subject>Hospitals</subject><subject>Human Physiology</subject><subject>Image registration</subject><subject>Imaging</subject><subject>Infrared imaging</subject><subject>Intensive care units</subject><subject>Machine learning</subject><subject>Modules</subject><subject>Monitoring</subject><subject>Neonates</subject><subject>Newborn babies</subject><subject>Original</subject><subject>Original Article</subject><subject>Radiology</subject><subject>Real time</subject><subject>Surface temperature</subject><subject>Telemedicine</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Thermography</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1P3DAQhi1UBAvtH-ihstQLl8CMP-LNpVK1Kh8SEhKCs-VkJxCU2KmdIPXf42WBthw4WJY9z_uOxy9jXxGOEcCcJESNpgAh8tIlFtUOW6BRWIBS6hNbACooAHG5zw5SegAQqIXaY_tSa8hSvWDXKzdQdLydUxc8b0PkkVxfTN1AfKJhzMVpjsSH4LspxM7f8dByT8G7iRLPsnyzJhp5Ty76fPrMdlvXJ_rysh-y29NfN6vz4vLq7GL187JotIKpICXKWqGqdAu4rFCsTSNrg7WryQBAU5LWdaPB1GLtlq2RxrTlUkkiUyMaech-bH3HuR5o3ZCfouvtGLvBxT82uM7-X_Hdvb0Lj7YCU4HcGBy9GMTwe6Y02aFLDfW9y-PNyYpSVyUII1VGv79DH8IcfR4vUyWoShoQmRJbqokhpUjt22MQ7CYyu43M5sjsc2S2yqJv_47xJnnNKANyC6Rx8_0U__b-wPYJpAiiDw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Lyra, Simon</creator><creator>Rixen, Jöran</creator><creator>Heimann, Konrad</creator><creator>Karthik, Srinivasa</creator><creator>Joseph, Jayaraj</creator><creator>Jayaraman, Kumutha</creator><creator>Orlikowsky, Thorsten</creator><creator>Sivaprakasam, Mohanasankar</creator><creator>Leonhardt, Steffen</creator><creator>Hoog Antink, Christoph</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3842-6897</orcidid></search><sort><creationdate>20220601</creationdate><title>Camera fusion for real-time temperature monitoring of neonates using deep learning</title><author>Lyra, Simon ; Rixen, Jöran ; Heimann, Konrad ; Karthik, Srinivasa ; Joseph, Jayaraj ; Jayaraman, Kumutha ; Orlikowsky, Thorsten ; Sivaprakasam, Mohanasankar ; Leonhardt, Steffen ; Hoog Antink, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-e426b41495f018912d7c3b71babe7000c6e55bc507b2da8f7377f6843ee7b1173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Body temperature</topic><topic>Cameras</topic><topic>Computer Applications</topic><topic>Deep learning</topic><topic>Hospitals</topic><topic>Human Physiology</topic><topic>Image registration</topic><topic>Imaging</topic><topic>Infrared imaging</topic><topic>Intensive care units</topic><topic>Machine learning</topic><topic>Modules</topic><topic>Monitoring</topic><topic>Neonates</topic><topic>Newborn babies</topic><topic>Original</topic><topic>Original Article</topic><topic>Radiology</topic><topic>Real time</topic><topic>Surface temperature</topic><topic>Telemedicine</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Thermography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyra, Simon</creatorcontrib><creatorcontrib>Rixen, Jöran</creatorcontrib><creatorcontrib>Heimann, Konrad</creatorcontrib><creatorcontrib>Karthik, Srinivasa</creatorcontrib><creatorcontrib>Joseph, Jayaraj</creatorcontrib><creatorcontrib>Jayaraman, Kumutha</creatorcontrib><creatorcontrib>Orlikowsky, Thorsten</creatorcontrib><creatorcontrib>Sivaprakasam, Mohanasankar</creatorcontrib><creatorcontrib>Leonhardt, Steffen</creatorcontrib><creatorcontrib>Hoog Antink, Christoph</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyra, Simon</au><au>Rixen, Jöran</au><au>Heimann, Konrad</au><au>Karthik, Srinivasa</au><au>Joseph, Jayaraj</au><au>Jayaraman, Kumutha</au><au>Orlikowsky, Thorsten</au><au>Sivaprakasam, Mohanasankar</au><au>Leonhardt, Steffen</au><au>Hoog Antink, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Camera fusion for real-time temperature monitoring of neonates using deep learning</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>60</volume><issue>6</issue><spage>1787</spage><epage>1800</epage><pages>1787-1800</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>The continuous monitoring of vital signs is a crucial aspect of medical care in neonatal intensive care units. Since cable-based sensors pose a potential risk for the immature skin of preterm infants, unobtrusive monitoring techniques using camera systems are increasingly investigated. The combination of deep learning–based algorithms and camera modalities such as RGB and infrared thermography can improve the development of cable-free methods for the extraction of vital parameters. In this study, a real-time approach for local extraction of temperatures on the body surface of neonates using a multi-modal clinical dataset was implemented. Therefore, a trained deep learning–based keypoint detector was used for body landmark prediction in RGB. Image registration was conducted to transfer the RGB points to the corresponding thermographic recordings. These landmarks were used to extract the body surface temperature in various regions to determine the central-peripheral temperature difference. A validation of the keypoint detector showed a mean average precision of 0.82. The registration resulted in mean absolute errors of 16.4 px (8.2 mm) for x and 22.4 px (11.2 mm) for y . The evaluation of the temperature extraction revealed a mean absolute error of 0.55  ∘ C. A final performance of 31 fps was observed on the NVIDIA Jetson Xavier NX module, which proves real-time capability on an embedded GPU system. As a result, the approach can perform real-time temperature extraction on a low-cost GPU module. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35505175</pmid><doi>10.1007/s11517-022-02561-9</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3842-6897</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 2022-06, Vol.60 (6), p.1787-1800
issn 0140-0118
1741-0444
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9079037
source SpringerNature Journals; EBSCOhost Business Source Complete
subjects Algorithms
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Body temperature
Cameras
Computer Applications
Deep learning
Hospitals
Human Physiology
Image registration
Imaging
Infrared imaging
Intensive care units
Machine learning
Modules
Monitoring
Neonates
Newborn babies
Original
Original Article
Radiology
Real time
Surface temperature
Telemedicine
Temperature
Temperature gradients
Thermography
title Camera fusion for real-time temperature monitoring of neonates using deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Camera%20fusion%20for%20real-time%20temperature%20monitoring%20of%20neonates%20using%20deep%20learning&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Lyra,%20Simon&rft.date=2022-06-01&rft.volume=60&rft.issue=6&rft.spage=1787&rft.epage=1800&rft.pages=1787-1800&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-022-02561-9&rft_dat=%3Cproquest_pubme%3E2660493702%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660493702&rft_id=info:pmid/35505175&rfr_iscdi=true