Emotion Analysis Model of Microblog Comment Text Based on CNN-BiLSTM

Aiming at the problems of over reliance on labor and low generalization of traditional emotion analysis methods based on dictionary and machine learning, an emotion analysis model of microblog comment text based on deep learning is proposed. Firstly, text is obtained through microblog crawler progra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2022-04, Vol.2022, p.1669569-10
Hauptverfasser: Li, Aichuan, Yi, Shujuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1669569
container_title Computational intelligence and neuroscience
container_volume 2022
creator Li, Aichuan
Yi, Shujuan
description Aiming at the problems of over reliance on labor and low generalization of traditional emotion analysis methods based on dictionary and machine learning, an emotion analysis model of microblog comment text based on deep learning is proposed. Firstly, text is obtained through microblog crawler program. After data preprocessing, including data cleaning, Chinese word segmentation, removal of stop words, and so on, the Skip-gram model is used for word vector training on a large-scale unmarked corpus, and then the trained word vector is used as the text input of CNN-BiLSTM model, which combines Bidirectional Long-Short Term Memory (BiLSTM) neural network and Convolution Neural Network (CNN). Considering the historical context information and the subsequent context information, BiLSTM can better use the temporal relationship of text to learn sentence semantics. CNN can extract hidden features from the text and combine them. Finally, after Adamax optimization training, the emotion type of microblog comment text is output. The proposed model combines the learning advantages of BiLSTM and CNN. The overall accuracy of text emotion analysis has been greatly improved, with an accuracy of 0.94 and an improvement of 8.51% compared with the single CNN model.
doi_str_mv 10.1155/2022/1669569
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9078776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A702937304</galeid><sourcerecordid>A702937304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-109d63b35cb6a3bfc65afd577ba496837d29dcce5d150315e6ad21f4357812b23</originalsourceid><addsrcrecordid>eNp9kbtv2zAQh4miQZO43ToXAroUSBTzoSOlpYDtPAE7HerMBEVSDgNJdEQ5j_8-dOy6TYZOJMDvPt7dD6GvBJ8QAjCkmNIh4bwAXnxAB4TnIgUq2MfdncM-OgzhDmMQgOkntM8AGFCMD9DpWeN759tk1Kr6ObiQzLyxdeKrZOZ058vaL5KJbxrb9sncPvXJWAVrklgxub5Ox276ez77jPYqVQf7ZXsO0M352XxymU5_XVxNRtNUZ5j3KcGF4axkoEuuWFlpDqoyIESpsoLnTBhaGK0tGAKYEbBcGUqqjIHICS0pG6CfG-9yVTbW6NhTp2q57FyjumfplZNvX1p3Kxf-QRZY5ELwKPixFXT-fmVDLxsXtK1r1Vq_CpJyTgpgjIuIfn-H3vlVF5f0SmGR5cD4X2qhaitdW_n4r15L5UhgWjDBcBap4w0VFxpCZ6tdywTLdYhyHaLchhjxb_-OuYP_pBaBow1w61qjHt3_dS_geKDi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660748536</pqid></control><display><type>article</type><title>Emotion Analysis Model of Microblog Comment Text Based on CNN-BiLSTM</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Li, Aichuan ; Yi, Shujuan</creator><contributor>Ahmad, Muhammad ; Muhammad Ahmad</contributor><creatorcontrib>Li, Aichuan ; Yi, Shujuan ; Ahmad, Muhammad ; Muhammad Ahmad</creatorcontrib><description>Aiming at the problems of over reliance on labor and low generalization of traditional emotion analysis methods based on dictionary and machine learning, an emotion analysis model of microblog comment text based on deep learning is proposed. Firstly, text is obtained through microblog crawler program. After data preprocessing, including data cleaning, Chinese word segmentation, removal of stop words, and so on, the Skip-gram model is used for word vector training on a large-scale unmarked corpus, and then the trained word vector is used as the text input of CNN-BiLSTM model, which combines Bidirectional Long-Short Term Memory (BiLSTM) neural network and Convolution Neural Network (CNN). Considering the historical context information and the subsequent context information, BiLSTM can better use the temporal relationship of text to learn sentence semantics. CNN can extract hidden features from the text and combine them. Finally, after Adamax optimization training, the emotion type of microblog comment text is output. The proposed model combines the learning advantages of BiLSTM and CNN. The overall accuracy of text emotion analysis has been greatly improved, with an accuracy of 0.94 and an improvement of 8.51% compared with the single CNN model.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2022/1669569</identifier><identifier>PMID: 35535200</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Accuracy ; Analysis ; Artificial neural networks ; Classification ; Computational linguistics ; Context ; Datasets ; Deep learning ; Dictionaries ; Emotions ; Feature extraction ; Language ; Language processing ; Long short-term memory ; Machine Learning ; Memory, Long-Term ; Microblogs ; Natural language interfaces ; Natural language processing ; Neural networks ; Neural Networks, Computer ; Optimization ; Public opinion ; Segmentation ; Semantics ; Training</subject><ispartof>Computational intelligence and neuroscience, 2022-04, Vol.2022, p.1669569-10</ispartof><rights>Copyright © 2022 Aichuan Li and Shujuan Yi.</rights><rights>COPYRIGHT 2022 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2022 Aichuan Li and Shujuan Yi. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Aichuan Li and Shujuan Yi. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-109d63b35cb6a3bfc65afd577ba496837d29dcce5d150315e6ad21f4357812b23</citedby><cites>FETCH-LOGICAL-c406t-109d63b35cb6a3bfc65afd577ba496837d29dcce5d150315e6ad21f4357812b23</cites><orcidid>0000-0001-5200-5805 ; 0000-0002-8842-3416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078776/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078776/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35535200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ahmad, Muhammad</contributor><contributor>Muhammad Ahmad</contributor><creatorcontrib>Li, Aichuan</creatorcontrib><creatorcontrib>Yi, Shujuan</creatorcontrib><title>Emotion Analysis Model of Microblog Comment Text Based on CNN-BiLSTM</title><title>Computational intelligence and neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>Aiming at the problems of over reliance on labor and low generalization of traditional emotion analysis methods based on dictionary and machine learning, an emotion analysis model of microblog comment text based on deep learning is proposed. Firstly, text is obtained through microblog crawler program. After data preprocessing, including data cleaning, Chinese word segmentation, removal of stop words, and so on, the Skip-gram model is used for word vector training on a large-scale unmarked corpus, and then the trained word vector is used as the text input of CNN-BiLSTM model, which combines Bidirectional Long-Short Term Memory (BiLSTM) neural network and Convolution Neural Network (CNN). Considering the historical context information and the subsequent context information, BiLSTM can better use the temporal relationship of text to learn sentence semantics. CNN can extract hidden features from the text and combine them. Finally, after Adamax optimization training, the emotion type of microblog comment text is output. The proposed model combines the learning advantages of BiLSTM and CNN. The overall accuracy of text emotion analysis has been greatly improved, with an accuracy of 0.94 and an improvement of 8.51% compared with the single CNN model.</description><subject>Accuracy</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computational linguistics</subject><subject>Context</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Dictionaries</subject><subject>Emotions</subject><subject>Feature extraction</subject><subject>Language</subject><subject>Language processing</subject><subject>Long short-term memory</subject><subject>Machine Learning</subject><subject>Memory, Long-Term</subject><subject>Microblogs</subject><subject>Natural language interfaces</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Optimization</subject><subject>Public opinion</subject><subject>Segmentation</subject><subject>Semantics</subject><subject>Training</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kbtv2zAQh4miQZO43ToXAroUSBTzoSOlpYDtPAE7HerMBEVSDgNJdEQ5j_8-dOy6TYZOJMDvPt7dD6GvBJ8QAjCkmNIh4bwAXnxAB4TnIgUq2MfdncM-OgzhDmMQgOkntM8AGFCMD9DpWeN759tk1Kr6ObiQzLyxdeKrZOZ058vaL5KJbxrb9sncPvXJWAVrklgxub5Ox276ez77jPYqVQf7ZXsO0M352XxymU5_XVxNRtNUZ5j3KcGF4axkoEuuWFlpDqoyIESpsoLnTBhaGK0tGAKYEbBcGUqqjIHICS0pG6CfG-9yVTbW6NhTp2q57FyjumfplZNvX1p3Kxf-QRZY5ELwKPixFXT-fmVDLxsXtK1r1Vq_CpJyTgpgjIuIfn-H3vlVF5f0SmGR5cD4X2qhaitdW_n4r15L5UhgWjDBcBap4w0VFxpCZ6tdywTLdYhyHaLchhjxb_-OuYP_pBaBow1w61qjHt3_dS_geKDi</recordid><startdate>20220430</startdate><enddate>20220430</enddate><creator>Li, Aichuan</creator><creator>Yi, Shujuan</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5200-5805</orcidid><orcidid>https://orcid.org/0000-0002-8842-3416</orcidid></search><sort><creationdate>20220430</creationdate><title>Emotion Analysis Model of Microblog Comment Text Based on CNN-BiLSTM</title><author>Li, Aichuan ; Yi, Shujuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-109d63b35cb6a3bfc65afd577ba496837d29dcce5d150315e6ad21f4357812b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computational linguistics</topic><topic>Context</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Dictionaries</topic><topic>Emotions</topic><topic>Feature extraction</topic><topic>Language</topic><topic>Language processing</topic><topic>Long short-term memory</topic><topic>Machine Learning</topic><topic>Memory, Long-Term</topic><topic>Microblogs</topic><topic>Natural language interfaces</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Optimization</topic><topic>Public opinion</topic><topic>Segmentation</topic><topic>Semantics</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Aichuan</creatorcontrib><creatorcontrib>Yi, Shujuan</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Aichuan</au><au>Yi, Shujuan</au><au>Ahmad, Muhammad</au><au>Muhammad Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emotion Analysis Model of Microblog Comment Text Based on CNN-BiLSTM</atitle><jtitle>Computational intelligence and neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2022-04-30</date><risdate>2022</risdate><volume>2022</volume><spage>1669569</spage><epage>10</epage><pages>1669569-10</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>Aiming at the problems of over reliance on labor and low generalization of traditional emotion analysis methods based on dictionary and machine learning, an emotion analysis model of microblog comment text based on deep learning is proposed. Firstly, text is obtained through microblog crawler program. After data preprocessing, including data cleaning, Chinese word segmentation, removal of stop words, and so on, the Skip-gram model is used for word vector training on a large-scale unmarked corpus, and then the trained word vector is used as the text input of CNN-BiLSTM model, which combines Bidirectional Long-Short Term Memory (BiLSTM) neural network and Convolution Neural Network (CNN). Considering the historical context information and the subsequent context information, BiLSTM can better use the temporal relationship of text to learn sentence semantics. CNN can extract hidden features from the text and combine them. Finally, after Adamax optimization training, the emotion type of microblog comment text is output. The proposed model combines the learning advantages of BiLSTM and CNN. The overall accuracy of text emotion analysis has been greatly improved, with an accuracy of 0.94 and an improvement of 8.51% compared with the single CNN model.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>35535200</pmid><doi>10.1155/2022/1669569</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5200-5805</orcidid><orcidid>https://orcid.org/0000-0002-8842-3416</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational intelligence and neuroscience, 2022-04, Vol.2022, p.1669569-10
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9078776
source MEDLINE; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection
subjects Accuracy
Analysis
Artificial neural networks
Classification
Computational linguistics
Context
Datasets
Deep learning
Dictionaries
Emotions
Feature extraction
Language
Language processing
Long short-term memory
Machine Learning
Memory, Long-Term
Microblogs
Natural language interfaces
Natural language processing
Neural networks
Neural Networks, Computer
Optimization
Public opinion
Segmentation
Semantics
Training
title Emotion Analysis Model of Microblog Comment Text Based on CNN-BiLSTM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emotion%20Analysis%20Model%20of%20Microblog%20Comment%20Text%20Based%20on%20CNN-BiLSTM&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Li,%20Aichuan&rft.date=2022-04-30&rft.volume=2022&rft.spage=1669569&rft.epage=10&rft.pages=1669569-10&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2022/1669569&rft_dat=%3Cgale_pubme%3EA702937304%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660748536&rft_id=info:pmid/35535200&rft_galeid=A702937304&rfr_iscdi=true