Magnetothermal Multiplexing for Selective Remote Control of Cell Signaling
Magnetic nanoparticles have garnered sustained research interest for their promise in biomedical applications including diagnostic imaging, triggered drug release, cancer hyperthermia, and neural stimulation. Many of these applications make use of heat dissipation by ferrite nanoparticles under alte...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-09, Vol.30 (36), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 36 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Moon, Junsang Christiansen, Michael G. Rao, Siyuan Marcus, Colin Bono, David C. Rosenfeld, Dekel Gregurec, Danijela Varnavides, Georgios Chiang, Po‐Han Park, Seongjun Anikeeva, Polina |
description | Magnetic nanoparticles have garnered sustained research interest for their promise in biomedical applications including diagnostic imaging, triggered drug release, cancer hyperthermia, and neural stimulation. Many of these applications make use of heat dissipation by ferrite nanoparticles under alternating magnetic fields, with these fields acting as an externally administered stimulus that is either present or absent, toggling heat dissipation on and off. Here, an extension of this concept, magnetothermal multiplexing is demonstrated, in which exposure to alternating magnetic fields of differing amplitude and frequency can result in selective and independent heating of magnetic nanoparticle ensembles. The differing magnetic coercivity of these particles, empirically characterized by a custom high amplitude alternating current magnetometer, informs the systematic selection of a multiplexed material system. This work culminates in a demonstration of magnetothermal multiplexing for selective remote control of cellular signaling in vitro.
Magnetothermal multiplexing relies on tuning of alternating magnetic field conditions to magnetic nanoparticle properties to achieve selective heating of distinct ferrofluids. Here, physical modeling, nanomaterials synthesis, and a custom alternating current magnetometer are combined to demonstrate magnetothermal multiplexing in situ and as a means to remotely control two independent cell populations with differing alternating magnetic field conditions. |
doi_str_mv | 10.1002/adfm.202000577 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9075680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439595757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4687-f850e68537a840d8d97487de2db151e849ea2683e27a48f4e8cb3c2785947a9e3</originalsourceid><addsrcrecordid>eNqFkUtrGzEYRUVpaJzHtssykE02dvQcSZuAcZM2ISaQB2Qn5JlvbBnNyNXMpM2_j4wT57HpSgIdHe7lIvSd4BHBmJ7YsqpHFFOMsZDyCxqQnORDhqn6ur2Th12017ZLjImUjH9Du0wIRoTSA3Q5tfMGutAtINbWZ9Ped27l4Z9r5lkVYnYLHorOPUJ2A3XoIJuEpovBZ6HKJuB9duvmjfUJP0A7lfUtHL6c--j-_Oxu8nt4df3rYjK-GhY8V3JYKYEhV4JJqzguVaklV7IEWs6IIKC4BktzxYBKy1XFQRUzVlCphObSamD76HTjXfWzGsoCUh7rzSq62sYnE6wzH18atzDz8Gg0liJXOAmOXwQx_Omh7Uzt2iJ1sQ2EvjU0z0mKpIlM6NEndBn6mPomijMttJBiTY02VBFD20aotmEINuuZzHoms50pffjxvsIWf90lAXoD_HUenv6jM-Of59M3-TN9hZ8P</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439595757</pqid></control><display><type>article</type><title>Magnetothermal Multiplexing for Selective Remote Control of Cell Signaling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Moon, Junsang ; Christiansen, Michael G. ; Rao, Siyuan ; Marcus, Colin ; Bono, David C. ; Rosenfeld, Dekel ; Gregurec, Danijela ; Varnavides, Georgios ; Chiang, Po‐Han ; Park, Seongjun ; Anikeeva, Polina</creator><creatorcontrib>Moon, Junsang ; Christiansen, Michael G. ; Rao, Siyuan ; Marcus, Colin ; Bono, David C. ; Rosenfeld, Dekel ; Gregurec, Danijela ; Varnavides, Georgios ; Chiang, Po‐Han ; Park, Seongjun ; Anikeeva, Polina</creatorcontrib><description>Magnetic nanoparticles have garnered sustained research interest for their promise in biomedical applications including diagnostic imaging, triggered drug release, cancer hyperthermia, and neural stimulation. Many of these applications make use of heat dissipation by ferrite nanoparticles under alternating magnetic fields, with these fields acting as an externally administered stimulus that is either present or absent, toggling heat dissipation on and off. Here, an extension of this concept, magnetothermal multiplexing is demonstrated, in which exposure to alternating magnetic fields of differing amplitude and frequency can result in selective and independent heating of magnetic nanoparticle ensembles. The differing magnetic coercivity of these particles, empirically characterized by a custom high amplitude alternating current magnetometer, informs the systematic selection of a multiplexed material system. This work culminates in a demonstration of magnetothermal multiplexing for selective remote control of cellular signaling in vitro.
Magnetothermal multiplexing relies on tuning of alternating magnetic field conditions to magnetic nanoparticle properties to achieve selective heating of distinct ferrofluids. Here, physical modeling, nanomaterials synthesis, and a custom alternating current magnetometer are combined to demonstrate magnetothermal multiplexing in situ and as a means to remotely control two independent cell populations with differing alternating magnetic field conditions.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202000577</identifier><identifier>PMID: 35531589</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>AC magnetometer ; Amplitudes ; Biomedical materials ; cellular signaling control ; Coercivity ; Diagnostic software ; Diagnostic systems ; Drug delivery systems ; Hyperthermia ; Magnetic fields ; magnetic nanoparticles ; Magnetometers ; Materials science ; multiplexed magnetothermal control ; Multiplexing ; Nanoparticles ; Remote control ; selective nanoparticle heating ; Signaling</subject><ispartof>Advanced functional materials, 2020-09, Vol.30 (36), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4687-f850e68537a840d8d97487de2db151e849ea2683e27a48f4e8cb3c2785947a9e3</citedby><cites>FETCH-LOGICAL-c4687-f850e68537a840d8d97487de2db151e849ea2683e27a48f4e8cb3c2785947a9e3</cites><orcidid>0000-0001-6495-5197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202000577$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202000577$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35531589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moon, Junsang</creatorcontrib><creatorcontrib>Christiansen, Michael G.</creatorcontrib><creatorcontrib>Rao, Siyuan</creatorcontrib><creatorcontrib>Marcus, Colin</creatorcontrib><creatorcontrib>Bono, David C.</creatorcontrib><creatorcontrib>Rosenfeld, Dekel</creatorcontrib><creatorcontrib>Gregurec, Danijela</creatorcontrib><creatorcontrib>Varnavides, Georgios</creatorcontrib><creatorcontrib>Chiang, Po‐Han</creatorcontrib><creatorcontrib>Park, Seongjun</creatorcontrib><creatorcontrib>Anikeeva, Polina</creatorcontrib><title>Magnetothermal Multiplexing for Selective Remote Control of Cell Signaling</title><title>Advanced functional materials</title><addtitle>Adv Funct Mater</addtitle><description>Magnetic nanoparticles have garnered sustained research interest for their promise in biomedical applications including diagnostic imaging, triggered drug release, cancer hyperthermia, and neural stimulation. Many of these applications make use of heat dissipation by ferrite nanoparticles under alternating magnetic fields, with these fields acting as an externally administered stimulus that is either present or absent, toggling heat dissipation on and off. Here, an extension of this concept, magnetothermal multiplexing is demonstrated, in which exposure to alternating magnetic fields of differing amplitude and frequency can result in selective and independent heating of magnetic nanoparticle ensembles. The differing magnetic coercivity of these particles, empirically characterized by a custom high amplitude alternating current magnetometer, informs the systematic selection of a multiplexed material system. This work culminates in a demonstration of magnetothermal multiplexing for selective remote control of cellular signaling in vitro.
Magnetothermal multiplexing relies on tuning of alternating magnetic field conditions to magnetic nanoparticle properties to achieve selective heating of distinct ferrofluids. Here, physical modeling, nanomaterials synthesis, and a custom alternating current magnetometer are combined to demonstrate magnetothermal multiplexing in situ and as a means to remotely control two independent cell populations with differing alternating magnetic field conditions.</description><subject>AC magnetometer</subject><subject>Amplitudes</subject><subject>Biomedical materials</subject><subject>cellular signaling control</subject><subject>Coercivity</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Drug delivery systems</subject><subject>Hyperthermia</subject><subject>Magnetic fields</subject><subject>magnetic nanoparticles</subject><subject>Magnetometers</subject><subject>Materials science</subject><subject>multiplexed magnetothermal control</subject><subject>Multiplexing</subject><subject>Nanoparticles</subject><subject>Remote control</subject><subject>selective nanoparticle heating</subject><subject>Signaling</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkUtrGzEYRUVpaJzHtssykE02dvQcSZuAcZM2ISaQB2Qn5JlvbBnNyNXMpM2_j4wT57HpSgIdHe7lIvSd4BHBmJ7YsqpHFFOMsZDyCxqQnORDhqn6ur2Th12017ZLjImUjH9Du0wIRoTSA3Q5tfMGutAtINbWZ9Ped27l4Z9r5lkVYnYLHorOPUJ2A3XoIJuEpovBZ6HKJuB9duvmjfUJP0A7lfUtHL6c--j-_Oxu8nt4df3rYjK-GhY8V3JYKYEhV4JJqzguVaklV7IEWs6IIKC4BktzxYBKy1XFQRUzVlCphObSamD76HTjXfWzGsoCUh7rzSq62sYnE6wzH18atzDz8Gg0liJXOAmOXwQx_Omh7Uzt2iJ1sQ2EvjU0z0mKpIlM6NEndBn6mPomijMttJBiTY02VBFD20aotmEINuuZzHoms50pffjxvsIWf90lAXoD_HUenv6jM-Of59M3-TN9hZ8P</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Moon, Junsang</creator><creator>Christiansen, Michael G.</creator><creator>Rao, Siyuan</creator><creator>Marcus, Colin</creator><creator>Bono, David C.</creator><creator>Rosenfeld, Dekel</creator><creator>Gregurec, Danijela</creator><creator>Varnavides, Georgios</creator><creator>Chiang, Po‐Han</creator><creator>Park, Seongjun</creator><creator>Anikeeva, Polina</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6495-5197</orcidid></search><sort><creationdate>20200901</creationdate><title>Magnetothermal Multiplexing for Selective Remote Control of Cell Signaling</title><author>Moon, Junsang ; Christiansen, Michael G. ; Rao, Siyuan ; Marcus, Colin ; Bono, David C. ; Rosenfeld, Dekel ; Gregurec, Danijela ; Varnavides, Georgios ; Chiang, Po‐Han ; Park, Seongjun ; Anikeeva, Polina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4687-f850e68537a840d8d97487de2db151e849ea2683e27a48f4e8cb3c2785947a9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AC magnetometer</topic><topic>Amplitudes</topic><topic>Biomedical materials</topic><topic>cellular signaling control</topic><topic>Coercivity</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Drug delivery systems</topic><topic>Hyperthermia</topic><topic>Magnetic fields</topic><topic>magnetic nanoparticles</topic><topic>Magnetometers</topic><topic>Materials science</topic><topic>multiplexed magnetothermal control</topic><topic>Multiplexing</topic><topic>Nanoparticles</topic><topic>Remote control</topic><topic>selective nanoparticle heating</topic><topic>Signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Junsang</creatorcontrib><creatorcontrib>Christiansen, Michael G.</creatorcontrib><creatorcontrib>Rao, Siyuan</creatorcontrib><creatorcontrib>Marcus, Colin</creatorcontrib><creatorcontrib>Bono, David C.</creatorcontrib><creatorcontrib>Rosenfeld, Dekel</creatorcontrib><creatorcontrib>Gregurec, Danijela</creatorcontrib><creatorcontrib>Varnavides, Georgios</creatorcontrib><creatorcontrib>Chiang, Po‐Han</creatorcontrib><creatorcontrib>Park, Seongjun</creatorcontrib><creatorcontrib>Anikeeva, Polina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Junsang</au><au>Christiansen, Michael G.</au><au>Rao, Siyuan</au><au>Marcus, Colin</au><au>Bono, David C.</au><au>Rosenfeld, Dekel</au><au>Gregurec, Danijela</au><au>Varnavides, Georgios</au><au>Chiang, Po‐Han</au><au>Park, Seongjun</au><au>Anikeeva, Polina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetothermal Multiplexing for Selective Remote Control of Cell Signaling</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv Funct Mater</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>30</volume><issue>36</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Magnetic nanoparticles have garnered sustained research interest for their promise in biomedical applications including diagnostic imaging, triggered drug release, cancer hyperthermia, and neural stimulation. Many of these applications make use of heat dissipation by ferrite nanoparticles under alternating magnetic fields, with these fields acting as an externally administered stimulus that is either present or absent, toggling heat dissipation on and off. Here, an extension of this concept, magnetothermal multiplexing is demonstrated, in which exposure to alternating magnetic fields of differing amplitude and frequency can result in selective and independent heating of magnetic nanoparticle ensembles. The differing magnetic coercivity of these particles, empirically characterized by a custom high amplitude alternating current magnetometer, informs the systematic selection of a multiplexed material system. This work culminates in a demonstration of magnetothermal multiplexing for selective remote control of cellular signaling in vitro.
Magnetothermal multiplexing relies on tuning of alternating magnetic field conditions to magnetic nanoparticle properties to achieve selective heating of distinct ferrofluids. Here, physical modeling, nanomaterials synthesis, and a custom alternating current magnetometer are combined to demonstrate magnetothermal multiplexing in situ and as a means to remotely control two independent cell populations with differing alternating magnetic field conditions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35531589</pmid><doi>10.1002/adfm.202000577</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6495-5197</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-09, Vol.30 (36), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9075680 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | AC magnetometer Amplitudes Biomedical materials cellular signaling control Coercivity Diagnostic software Diagnostic systems Drug delivery systems Hyperthermia Magnetic fields magnetic nanoparticles Magnetometers Materials science multiplexed magnetothermal control Multiplexing Nanoparticles Remote control selective nanoparticle heating Signaling |
title | Magnetothermal Multiplexing for Selective Remote Control of Cell Signaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetothermal%20Multiplexing%20for%20Selective%20Remote%20Control%20of%20Cell%20Signaling&rft.jtitle=Advanced%20functional%20materials&rft.au=Moon,%20Junsang&rft.date=2020-09-01&rft.volume=30&rft.issue=36&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202000577&rft_dat=%3Cproquest_pubme%3E2439595757%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439595757&rft_id=info:pmid/35531589&rfr_iscdi=true |