Magnetothermal Multiplexing for Selective Remote Control of Cell Signaling

Magnetic nanoparticles have garnered sustained research interest for their promise in biomedical applications including diagnostic imaging, triggered drug release, cancer hyperthermia, and neural stimulation. Many of these applications make use of heat dissipation by ferrite nanoparticles under alte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-09, Vol.30 (36), p.n/a
Hauptverfasser: Moon, Junsang, Christiansen, Michael G., Rao, Siyuan, Marcus, Colin, Bono, David C., Rosenfeld, Dekel, Gregurec, Danijela, Varnavides, Georgios, Chiang, Po‐Han, Park, Seongjun, Anikeeva, Polina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page
container_title Advanced functional materials
container_volume 30
creator Moon, Junsang
Christiansen, Michael G.
Rao, Siyuan
Marcus, Colin
Bono, David C.
Rosenfeld, Dekel
Gregurec, Danijela
Varnavides, Georgios
Chiang, Po‐Han
Park, Seongjun
Anikeeva, Polina
description Magnetic nanoparticles have garnered sustained research interest for their promise in biomedical applications including diagnostic imaging, triggered drug release, cancer hyperthermia, and neural stimulation. Many of these applications make use of heat dissipation by ferrite nanoparticles under alternating magnetic fields, with these fields acting as an externally administered stimulus that is either present or absent, toggling heat dissipation on and off. Here, an extension of this concept, magnetothermal multiplexing is demonstrated, in which exposure to alternating magnetic fields of differing amplitude and frequency can result in selective and independent heating of magnetic nanoparticle ensembles. The differing magnetic coercivity of these particles, empirically characterized by a custom high amplitude alternating current magnetometer, informs the systematic selection of a multiplexed material system. This work culminates in a demonstration of magnetothermal multiplexing for selective remote control of cellular signaling in vitro. Magnetothermal multiplexing relies on tuning of alternating magnetic field conditions to magnetic nanoparticle properties to achieve selective heating of distinct ferrofluids. Here, physical modeling, nanomaterials synthesis, and a custom alternating current magnetometer are combined to demonstrate magnetothermal multiplexing in situ and as a means to remotely control two independent cell populations with differing alternating magnetic field conditions.
doi_str_mv 10.1002/adfm.202000577
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9075680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439595757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4687-f850e68537a840d8d97487de2db151e849ea2683e27a48f4e8cb3c2785947a9e3</originalsourceid><addsrcrecordid>eNqFkUtrGzEYRUVpaJzHtssykE02dvQcSZuAcZM2ISaQB2Qn5JlvbBnNyNXMpM2_j4wT57HpSgIdHe7lIvSd4BHBmJ7YsqpHFFOMsZDyCxqQnORDhqn6ur2Th12017ZLjImUjH9Du0wIRoTSA3Q5tfMGutAtINbWZ9Ped27l4Z9r5lkVYnYLHorOPUJ2A3XoIJuEpovBZ6HKJuB9duvmjfUJP0A7lfUtHL6c--j-_Oxu8nt4df3rYjK-GhY8V3JYKYEhV4JJqzguVaklV7IEWs6IIKC4BktzxYBKy1XFQRUzVlCphObSamD76HTjXfWzGsoCUh7rzSq62sYnE6wzH18atzDz8Gg0liJXOAmOXwQx_Omh7Uzt2iJ1sQ2EvjU0z0mKpIlM6NEndBn6mPomijMttJBiTY02VBFD20aotmEINuuZzHoms50pffjxvsIWf90lAXoD_HUenv6jM-Of59M3-TN9hZ8P</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439595757</pqid></control><display><type>article</type><title>Magnetothermal Multiplexing for Selective Remote Control of Cell Signaling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Moon, Junsang ; Christiansen, Michael G. ; Rao, Siyuan ; Marcus, Colin ; Bono, David C. ; Rosenfeld, Dekel ; Gregurec, Danijela ; Varnavides, Georgios ; Chiang, Po‐Han ; Park, Seongjun ; Anikeeva, Polina</creator><creatorcontrib>Moon, Junsang ; Christiansen, Michael G. ; Rao, Siyuan ; Marcus, Colin ; Bono, David C. ; Rosenfeld, Dekel ; Gregurec, Danijela ; Varnavides, Georgios ; Chiang, Po‐Han ; Park, Seongjun ; Anikeeva, Polina</creatorcontrib><description>Magnetic nanoparticles have garnered sustained research interest for their promise in biomedical applications including diagnostic imaging, triggered drug release, cancer hyperthermia, and neural stimulation. Many of these applications make use of heat dissipation by ferrite nanoparticles under alternating magnetic fields, with these fields acting as an externally administered stimulus that is either present or absent, toggling heat dissipation on and off. Here, an extension of this concept, magnetothermal multiplexing is demonstrated, in which exposure to alternating magnetic fields of differing amplitude and frequency can result in selective and independent heating of magnetic nanoparticle ensembles. The differing magnetic coercivity of these particles, empirically characterized by a custom high amplitude alternating current magnetometer, informs the systematic selection of a multiplexed material system. This work culminates in a demonstration of magnetothermal multiplexing for selective remote control of cellular signaling in vitro. Magnetothermal multiplexing relies on tuning of alternating magnetic field conditions to magnetic nanoparticle properties to achieve selective heating of distinct ferrofluids. Here, physical modeling, nanomaterials synthesis, and a custom alternating current magnetometer are combined to demonstrate magnetothermal multiplexing in situ and as a means to remotely control two independent cell populations with differing alternating magnetic field conditions.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202000577</identifier><identifier>PMID: 35531589</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>AC magnetometer ; Amplitudes ; Biomedical materials ; cellular signaling control ; Coercivity ; Diagnostic software ; Diagnostic systems ; Drug delivery systems ; Hyperthermia ; Magnetic fields ; magnetic nanoparticles ; Magnetometers ; Materials science ; multiplexed magnetothermal control ; Multiplexing ; Nanoparticles ; Remote control ; selective nanoparticle heating ; Signaling</subject><ispartof>Advanced functional materials, 2020-09, Vol.30 (36), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4687-f850e68537a840d8d97487de2db151e849ea2683e27a48f4e8cb3c2785947a9e3</citedby><cites>FETCH-LOGICAL-c4687-f850e68537a840d8d97487de2db151e849ea2683e27a48f4e8cb3c2785947a9e3</cites><orcidid>0000-0001-6495-5197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202000577$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202000577$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35531589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moon, Junsang</creatorcontrib><creatorcontrib>Christiansen, Michael G.</creatorcontrib><creatorcontrib>Rao, Siyuan</creatorcontrib><creatorcontrib>Marcus, Colin</creatorcontrib><creatorcontrib>Bono, David C.</creatorcontrib><creatorcontrib>Rosenfeld, Dekel</creatorcontrib><creatorcontrib>Gregurec, Danijela</creatorcontrib><creatorcontrib>Varnavides, Georgios</creatorcontrib><creatorcontrib>Chiang, Po‐Han</creatorcontrib><creatorcontrib>Park, Seongjun</creatorcontrib><creatorcontrib>Anikeeva, Polina</creatorcontrib><title>Magnetothermal Multiplexing for Selective Remote Control of Cell Signaling</title><title>Advanced functional materials</title><addtitle>Adv Funct Mater</addtitle><description>Magnetic nanoparticles have garnered sustained research interest for their promise in biomedical applications including diagnostic imaging, triggered drug release, cancer hyperthermia, and neural stimulation. Many of these applications make use of heat dissipation by ferrite nanoparticles under alternating magnetic fields, with these fields acting as an externally administered stimulus that is either present or absent, toggling heat dissipation on and off. Here, an extension of this concept, magnetothermal multiplexing is demonstrated, in which exposure to alternating magnetic fields of differing amplitude and frequency can result in selective and independent heating of magnetic nanoparticle ensembles. The differing magnetic coercivity of these particles, empirically characterized by a custom high amplitude alternating current magnetometer, informs the systematic selection of a multiplexed material system. This work culminates in a demonstration of magnetothermal multiplexing for selective remote control of cellular signaling in vitro. Magnetothermal multiplexing relies on tuning of alternating magnetic field conditions to magnetic nanoparticle properties to achieve selective heating of distinct ferrofluids. Here, physical modeling, nanomaterials synthesis, and a custom alternating current magnetometer are combined to demonstrate magnetothermal multiplexing in situ and as a means to remotely control two independent cell populations with differing alternating magnetic field conditions.</description><subject>AC magnetometer</subject><subject>Amplitudes</subject><subject>Biomedical materials</subject><subject>cellular signaling control</subject><subject>Coercivity</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Drug delivery systems</subject><subject>Hyperthermia</subject><subject>Magnetic fields</subject><subject>magnetic nanoparticles</subject><subject>Magnetometers</subject><subject>Materials science</subject><subject>multiplexed magnetothermal control</subject><subject>Multiplexing</subject><subject>Nanoparticles</subject><subject>Remote control</subject><subject>selective nanoparticle heating</subject><subject>Signaling</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkUtrGzEYRUVpaJzHtssykE02dvQcSZuAcZM2ISaQB2Qn5JlvbBnNyNXMpM2_j4wT57HpSgIdHe7lIvSd4BHBmJ7YsqpHFFOMsZDyCxqQnORDhqn6ur2Th12017ZLjImUjH9Du0wIRoTSA3Q5tfMGutAtINbWZ9Ped27l4Z9r5lkVYnYLHorOPUJ2A3XoIJuEpovBZ6HKJuB9duvmjfUJP0A7lfUtHL6c--j-_Oxu8nt4df3rYjK-GhY8V3JYKYEhV4JJqzguVaklV7IEWs6IIKC4BktzxYBKy1XFQRUzVlCphObSamD76HTjXfWzGsoCUh7rzSq62sYnE6wzH18atzDz8Gg0liJXOAmOXwQx_Omh7Uzt2iJ1sQ2EvjU0z0mKpIlM6NEndBn6mPomijMttJBiTY02VBFD20aotmEINuuZzHoms50pffjxvsIWf90lAXoD_HUenv6jM-Of59M3-TN9hZ8P</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Moon, Junsang</creator><creator>Christiansen, Michael G.</creator><creator>Rao, Siyuan</creator><creator>Marcus, Colin</creator><creator>Bono, David C.</creator><creator>Rosenfeld, Dekel</creator><creator>Gregurec, Danijela</creator><creator>Varnavides, Georgios</creator><creator>Chiang, Po‐Han</creator><creator>Park, Seongjun</creator><creator>Anikeeva, Polina</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6495-5197</orcidid></search><sort><creationdate>20200901</creationdate><title>Magnetothermal Multiplexing for Selective Remote Control of Cell Signaling</title><author>Moon, Junsang ; Christiansen, Michael G. ; Rao, Siyuan ; Marcus, Colin ; Bono, David C. ; Rosenfeld, Dekel ; Gregurec, Danijela ; Varnavides, Georgios ; Chiang, Po‐Han ; Park, Seongjun ; Anikeeva, Polina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4687-f850e68537a840d8d97487de2db151e849ea2683e27a48f4e8cb3c2785947a9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AC magnetometer</topic><topic>Amplitudes</topic><topic>Biomedical materials</topic><topic>cellular signaling control</topic><topic>Coercivity</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Drug delivery systems</topic><topic>Hyperthermia</topic><topic>Magnetic fields</topic><topic>magnetic nanoparticles</topic><topic>Magnetometers</topic><topic>Materials science</topic><topic>multiplexed magnetothermal control</topic><topic>Multiplexing</topic><topic>Nanoparticles</topic><topic>Remote control</topic><topic>selective nanoparticle heating</topic><topic>Signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Junsang</creatorcontrib><creatorcontrib>Christiansen, Michael G.</creatorcontrib><creatorcontrib>Rao, Siyuan</creatorcontrib><creatorcontrib>Marcus, Colin</creatorcontrib><creatorcontrib>Bono, David C.</creatorcontrib><creatorcontrib>Rosenfeld, Dekel</creatorcontrib><creatorcontrib>Gregurec, Danijela</creatorcontrib><creatorcontrib>Varnavides, Georgios</creatorcontrib><creatorcontrib>Chiang, Po‐Han</creatorcontrib><creatorcontrib>Park, Seongjun</creatorcontrib><creatorcontrib>Anikeeva, Polina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Junsang</au><au>Christiansen, Michael G.</au><au>Rao, Siyuan</au><au>Marcus, Colin</au><au>Bono, David C.</au><au>Rosenfeld, Dekel</au><au>Gregurec, Danijela</au><au>Varnavides, Georgios</au><au>Chiang, Po‐Han</au><au>Park, Seongjun</au><au>Anikeeva, Polina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetothermal Multiplexing for Selective Remote Control of Cell Signaling</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv Funct Mater</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>30</volume><issue>36</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Magnetic nanoparticles have garnered sustained research interest for their promise in biomedical applications including diagnostic imaging, triggered drug release, cancer hyperthermia, and neural stimulation. Many of these applications make use of heat dissipation by ferrite nanoparticles under alternating magnetic fields, with these fields acting as an externally administered stimulus that is either present or absent, toggling heat dissipation on and off. Here, an extension of this concept, magnetothermal multiplexing is demonstrated, in which exposure to alternating magnetic fields of differing amplitude and frequency can result in selective and independent heating of magnetic nanoparticle ensembles. The differing magnetic coercivity of these particles, empirically characterized by a custom high amplitude alternating current magnetometer, informs the systematic selection of a multiplexed material system. This work culminates in a demonstration of magnetothermal multiplexing for selective remote control of cellular signaling in vitro. Magnetothermal multiplexing relies on tuning of alternating magnetic field conditions to magnetic nanoparticle properties to achieve selective heating of distinct ferrofluids. Here, physical modeling, nanomaterials synthesis, and a custom alternating current magnetometer are combined to demonstrate magnetothermal multiplexing in situ and as a means to remotely control two independent cell populations with differing alternating magnetic field conditions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35531589</pmid><doi>10.1002/adfm.202000577</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6495-5197</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-09, Vol.30 (36), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9075680
source Wiley Online Library Journals Frontfile Complete
subjects AC magnetometer
Amplitudes
Biomedical materials
cellular signaling control
Coercivity
Diagnostic software
Diagnostic systems
Drug delivery systems
Hyperthermia
Magnetic fields
magnetic nanoparticles
Magnetometers
Materials science
multiplexed magnetothermal control
Multiplexing
Nanoparticles
Remote control
selective nanoparticle heating
Signaling
title Magnetothermal Multiplexing for Selective Remote Control of Cell Signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetothermal%20Multiplexing%20for%20Selective%20Remote%20Control%20of%20Cell%20Signaling&rft.jtitle=Advanced%20functional%20materials&rft.au=Moon,%20Junsang&rft.date=2020-09-01&rft.volume=30&rft.issue=36&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202000577&rft_dat=%3Cproquest_pubme%3E2439595757%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439595757&rft_id=info:pmid/35531589&rfr_iscdi=true