DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated SnO2 (110) surface

Methoxy propanol has been widely used in modern industry and consumer products. Inhalation or skin exposure to methoxy propanol for a long period would bring about safety challenges on human habitat and health. Ag decorated SnO2 mesoporous material has been synthesized and shown to exhibit high sens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2019, Vol.9 (61), p.35862-35871
Hauptverfasser: Li, Meihua, Zhu, Huichao, Guangfen Wei, He, Aixiang, Liu, Yanli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35871
container_issue 61
container_start_page 35862
container_title RSC advances
container_volume 9
creator Li, Meihua
Zhu, Huichao
Guangfen Wei
He, Aixiang
Liu, Yanli
description Methoxy propanol has been widely used in modern industry and consumer products. Inhalation or skin exposure to methoxy propanol for a long period would bring about safety challenges on human habitat and health. Ag decorated SnO2 mesoporous material has been synthesized and shown to exhibit high sensitivity and good selectivity to methoxy propanol among other interferential VOC gases. Density Functional Theory study were conducted to yield insight into the surface–adsorbate interactions and therefore the gas sensing improvement mechanism by presenting accurate energetic and electronic properties for the Ag/SnO2 system. Firstly, an electron transfer model on Ag and SnO2 grain interface was put forward to illustrate the methoxy propanol gas sensing mechanism. Then, a three-layer adsorption model (TLAM) was proposed to investigate methoxy propanol gas sensing properties on a SnO2 (110) surface. In the TLAM method, taking SnO2 (110) surface for the basis, layer 1 illustrates the decoration of metal Ag on SnO2 (110) surface. Layer 2 represents the adsorption of molecular oxygen on metal Ag decorated SnO2 (110) surface. Layer 3 indicates the adsorption of methoxy propanol, and for comparison, three other VOC gases (namely, ethanol, isopropanol and p-xylene) on Ag decorated SnO2 (110) surface with oxygen species pre-adsorbed consecutively. All the adsorption processes were calculated by means of Density Functional Theory method; the adsorption energy, net charge transfer, DOS, PDOS and also experimental data were utilized to investigate the methoxy propanol gas sensing mechanism on Ag decorated SnO2 (110) surface with oxygen species pre-adsorbed.
doi_str_mv 10.1039/c9ra02958c
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9074410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312502692</sourcerecordid><originalsourceid>FETCH-LOGICAL-p307t-91ecec1a79829f749b63b7c7edb4ec015b60845dc2bb1bdc0465224dd84b75633</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdBbKm9-AsWvOihut_JXgRRq0KhB-s57Me0jSS7cTcR---N6EUHhjm8Dw_Mi9AZJVeUcH3tdDKEaVm6IzRlRKgFI0pP0DznNzKOkpQpeoImXEpWUlJOUXe_3GBnGjc0pq9jwCb4cU1zyHXGcYv7PeCdyThDyHXY4Rbc3oQ6t99hC_0-fh5wl2JnQmzwKLjdYQ8uJtODxy9hzfAFpeQS5yFtjYNTdLw1TYb5752h1-XD5u5psVo_Pt_drhYdJ0W_0BQcOGoKXTK9LYS2itvCFeCtAEeotIqUQnrHrKXWu_FZyZjwvhS2kIrzGbr58XaDbcE7CH0yTdWlujXpUEVTV3-TUO-rXfyoNCmEGOucoYtfQYrvA-S-auvsoGlMgDjkiilFRSkUL0b0_B_6Foc0ljhSnDJJmNKMfwH8oYAa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312502692</pqid></control><display><type>article</type><title>DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated SnO2 (110) surface</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Li, Meihua ; Zhu, Huichao ; Guangfen Wei ; He, Aixiang ; Liu, Yanli</creator><creatorcontrib>Li, Meihua ; Zhu, Huichao ; Guangfen Wei ; He, Aixiang ; Liu, Yanli</creatorcontrib><description>Methoxy propanol has been widely used in modern industry and consumer products. Inhalation or skin exposure to methoxy propanol for a long period would bring about safety challenges on human habitat and health. Ag decorated SnO2 mesoporous material has been synthesized and shown to exhibit high sensitivity and good selectivity to methoxy propanol among other interferential VOC gases. Density Functional Theory study were conducted to yield insight into the surface–adsorbate interactions and therefore the gas sensing improvement mechanism by presenting accurate energetic and electronic properties for the Ag/SnO2 system. Firstly, an electron transfer model on Ag and SnO2 grain interface was put forward to illustrate the methoxy propanol gas sensing mechanism. Then, a three-layer adsorption model (TLAM) was proposed to investigate methoxy propanol gas sensing properties on a SnO2 (110) surface. In the TLAM method, taking SnO2 (110) surface for the basis, layer 1 illustrates the decoration of metal Ag on SnO2 (110) surface. Layer 2 represents the adsorption of molecular oxygen on metal Ag decorated SnO2 (110) surface. Layer 3 indicates the adsorption of methoxy propanol, and for comparison, three other VOC gases (namely, ethanol, isopropanol and p-xylene) on Ag decorated SnO2 (110) surface with oxygen species pre-adsorbed consecutively. All the adsorption processes were calculated by means of Density Functional Theory method; the adsorption energy, net charge transfer, DOS, PDOS and also experimental data were utilized to investigate the methoxy propanol gas sensing mechanism on Ag decorated SnO2 (110) surface with oxygen species pre-adsorbed.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c9ra02958c</identifier><identifier>PMID: 35528108</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorbates ; Adsorption ; Charge transfer ; Chemistry ; Decoration ; Density functional theory ; Density of states ; Detection ; Electron transfer ; Ethanol ; Gas sensors ; Gases ; Oxygen ; Respiration ; Selectivity ; Silver ; Surface chemistry ; Tin dioxide ; Xylene</subject><ispartof>RSC advances, 2019, Vol.9 (61), p.35862-35871</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9074410/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9074410/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,4025,27928,27929,27930,53796,53798</link.rule.ids></links><search><creatorcontrib>Li, Meihua</creatorcontrib><creatorcontrib>Zhu, Huichao</creatorcontrib><creatorcontrib>Guangfen Wei</creatorcontrib><creatorcontrib>He, Aixiang</creatorcontrib><creatorcontrib>Liu, Yanli</creatorcontrib><title>DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated SnO2 (110) surface</title><title>RSC advances</title><description>Methoxy propanol has been widely used in modern industry and consumer products. Inhalation or skin exposure to methoxy propanol for a long period would bring about safety challenges on human habitat and health. Ag decorated SnO2 mesoporous material has been synthesized and shown to exhibit high sensitivity and good selectivity to methoxy propanol among other interferential VOC gases. Density Functional Theory study were conducted to yield insight into the surface–adsorbate interactions and therefore the gas sensing improvement mechanism by presenting accurate energetic and electronic properties for the Ag/SnO2 system. Firstly, an electron transfer model on Ag and SnO2 grain interface was put forward to illustrate the methoxy propanol gas sensing mechanism. Then, a three-layer adsorption model (TLAM) was proposed to investigate methoxy propanol gas sensing properties on a SnO2 (110) surface. In the TLAM method, taking SnO2 (110) surface for the basis, layer 1 illustrates the decoration of metal Ag on SnO2 (110) surface. Layer 2 represents the adsorption of molecular oxygen on metal Ag decorated SnO2 (110) surface. Layer 3 indicates the adsorption of methoxy propanol, and for comparison, three other VOC gases (namely, ethanol, isopropanol and p-xylene) on Ag decorated SnO2 (110) surface with oxygen species pre-adsorbed consecutively. All the adsorption processes were calculated by means of Density Functional Theory method; the adsorption energy, net charge transfer, DOS, PDOS and also experimental data were utilized to investigate the methoxy propanol gas sensing mechanism on Ag decorated SnO2 (110) surface with oxygen species pre-adsorbed.</description><subject>Adsorbates</subject><subject>Adsorption</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Decoration</subject><subject>Density functional theory</subject><subject>Density of states</subject><subject>Detection</subject><subject>Electron transfer</subject><subject>Ethanol</subject><subject>Gas sensors</subject><subject>Gases</subject><subject>Oxygen</subject><subject>Respiration</subject><subject>Selectivity</subject><subject>Silver</subject><subject>Surface chemistry</subject><subject>Tin dioxide</subject><subject>Xylene</subject><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdBbKm9-AsWvOihut_JXgRRq0KhB-s57Me0jSS7cTcR---N6EUHhjm8Dw_Mi9AZJVeUcH3tdDKEaVm6IzRlRKgFI0pP0DznNzKOkpQpeoImXEpWUlJOUXe_3GBnGjc0pq9jwCb4cU1zyHXGcYv7PeCdyThDyHXY4Rbc3oQ6t99hC_0-fh5wl2JnQmzwKLjdYQ8uJtODxy9hzfAFpeQS5yFtjYNTdLw1TYb5752h1-XD5u5psVo_Pt_drhYdJ0W_0BQcOGoKXTK9LYS2itvCFeCtAEeotIqUQnrHrKXWu_FZyZjwvhS2kIrzGbr58XaDbcE7CH0yTdWlujXpUEVTV3-TUO-rXfyoNCmEGOucoYtfQYrvA-S-auvsoGlMgDjkiilFRSkUL0b0_B_6Foc0ljhSnDJJmNKMfwH8oYAa</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Li, Meihua</creator><creator>Zhu, Huichao</creator><creator>Guangfen Wei</creator><creator>He, Aixiang</creator><creator>Liu, Yanli</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2019</creationdate><title>DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated SnO2 (110) surface</title><author>Li, Meihua ; Zhu, Huichao ; Guangfen Wei ; He, Aixiang ; Liu, Yanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p307t-91ecec1a79829f749b63b7c7edb4ec015b60845dc2bb1bdc0465224dd84b75633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorbates</topic><topic>Adsorption</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Decoration</topic><topic>Density functional theory</topic><topic>Density of states</topic><topic>Detection</topic><topic>Electron transfer</topic><topic>Ethanol</topic><topic>Gas sensors</topic><topic>Gases</topic><topic>Oxygen</topic><topic>Respiration</topic><topic>Selectivity</topic><topic>Silver</topic><topic>Surface chemistry</topic><topic>Tin dioxide</topic><topic>Xylene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Meihua</creatorcontrib><creatorcontrib>Zhu, Huichao</creatorcontrib><creatorcontrib>Guangfen Wei</creatorcontrib><creatorcontrib>He, Aixiang</creatorcontrib><creatorcontrib>Liu, Yanli</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Meihua</au><au>Zhu, Huichao</au><au>Guangfen Wei</au><au>He, Aixiang</au><au>Liu, Yanli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated SnO2 (110) surface</atitle><jtitle>RSC advances</jtitle><date>2019</date><risdate>2019</risdate><volume>9</volume><issue>61</issue><spage>35862</spage><epage>35871</epage><pages>35862-35871</pages><eissn>2046-2069</eissn><abstract>Methoxy propanol has been widely used in modern industry and consumer products. Inhalation or skin exposure to methoxy propanol for a long period would bring about safety challenges on human habitat and health. Ag decorated SnO2 mesoporous material has been synthesized and shown to exhibit high sensitivity and good selectivity to methoxy propanol among other interferential VOC gases. Density Functional Theory study were conducted to yield insight into the surface–adsorbate interactions and therefore the gas sensing improvement mechanism by presenting accurate energetic and electronic properties for the Ag/SnO2 system. Firstly, an electron transfer model on Ag and SnO2 grain interface was put forward to illustrate the methoxy propanol gas sensing mechanism. Then, a three-layer adsorption model (TLAM) was proposed to investigate methoxy propanol gas sensing properties on a SnO2 (110) surface. In the TLAM method, taking SnO2 (110) surface for the basis, layer 1 illustrates the decoration of metal Ag on SnO2 (110) surface. Layer 2 represents the adsorption of molecular oxygen on metal Ag decorated SnO2 (110) surface. Layer 3 indicates the adsorption of methoxy propanol, and for comparison, three other VOC gases (namely, ethanol, isopropanol and p-xylene) on Ag decorated SnO2 (110) surface with oxygen species pre-adsorbed consecutively. All the adsorption processes were calculated by means of Density Functional Theory method; the adsorption energy, net charge transfer, DOS, PDOS and also experimental data were utilized to investigate the methoxy propanol gas sensing mechanism on Ag decorated SnO2 (110) surface with oxygen species pre-adsorbed.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>35528108</pmid><doi>10.1039/c9ra02958c</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2046-2069
ispartof RSC advances, 2019, Vol.9 (61), p.35862-35871
issn 2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9074410
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Adsorbates
Adsorption
Charge transfer
Chemistry
Decoration
Density functional theory
Density of states
Detection
Electron transfer
Ethanol
Gas sensors
Gases
Oxygen
Respiration
Selectivity
Silver
Surface chemistry
Tin dioxide
Xylene
title DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated SnO2 (110) surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T15%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DFT%20calculation%20and%20analysis%20of%20the%20gas%20sensing%20mechanism%20of%20methoxy%20propanol%20on%20Ag%20decorated%20SnO2%20(110)%20surface&rft.jtitle=RSC%20advances&rft.au=Li,%20Meihua&rft.date=2019&rft.volume=9&rft.issue=61&rft.spage=35862&rft.epage=35871&rft.pages=35862-35871&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c9ra02958c&rft_dat=%3Cproquest_pubme%3E2312502692%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312502692&rft_id=info:pmid/35528108&rfr_iscdi=true