DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated SnO2 (110) surface
Methoxy propanol has been widely used in modern industry and consumer products. Inhalation or skin exposure to methoxy propanol for a long period would bring about safety challenges on human habitat and health. Ag decorated SnO2 mesoporous material has been synthesized and shown to exhibit high sens...
Gespeichert in:
Veröffentlicht in: | RSC advances 2019, Vol.9 (61), p.35862-35871 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35871 |
---|---|
container_issue | 61 |
container_start_page | 35862 |
container_title | RSC advances |
container_volume | 9 |
creator | Li, Meihua Zhu, Huichao Guangfen Wei He, Aixiang Liu, Yanli |
description | Methoxy propanol has been widely used in modern industry and consumer products. Inhalation or skin exposure to methoxy propanol for a long period would bring about safety challenges on human habitat and health. Ag decorated SnO2 mesoporous material has been synthesized and shown to exhibit high sensitivity and good selectivity to methoxy propanol among other interferential VOC gases. Density Functional Theory study were conducted to yield insight into the surface–adsorbate interactions and therefore the gas sensing improvement mechanism by presenting accurate energetic and electronic properties for the Ag/SnO2 system. Firstly, an electron transfer model on Ag and SnO2 grain interface was put forward to illustrate the methoxy propanol gas sensing mechanism. Then, a three-layer adsorption model (TLAM) was proposed to investigate methoxy propanol gas sensing properties on a SnO2 (110) surface. In the TLAM method, taking SnO2 (110) surface for the basis, layer 1 illustrates the decoration of metal Ag on SnO2 (110) surface. Layer 2 represents the adsorption of molecular oxygen on metal Ag decorated SnO2 (110) surface. Layer 3 indicates the adsorption of methoxy propanol, and for comparison, three other VOC gases (namely, ethanol, isopropanol and p-xylene) on Ag decorated SnO2 (110) surface with oxygen species pre-adsorbed consecutively. All the adsorption processes were calculated by means of Density Functional Theory method; the adsorption energy, net charge transfer, DOS, PDOS and also experimental data were utilized to investigate the methoxy propanol gas sensing mechanism on Ag decorated SnO2 (110) surface with oxygen species pre-adsorbed. |
doi_str_mv | 10.1039/c9ra02958c |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9074410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312502692</sourcerecordid><originalsourceid>FETCH-LOGICAL-p307t-91ecec1a79829f749b63b7c7edb4ec015b60845dc2bb1bdc0465224dd84b75633</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdBbKm9-AsWvOihut_JXgRRq0KhB-s57Me0jSS7cTcR---N6EUHhjm8Dw_Mi9AZJVeUcH3tdDKEaVm6IzRlRKgFI0pP0DznNzKOkpQpeoImXEpWUlJOUXe_3GBnGjc0pq9jwCb4cU1zyHXGcYv7PeCdyThDyHXY4Rbc3oQ6t99hC_0-fh5wl2JnQmzwKLjdYQ8uJtODxy9hzfAFpeQS5yFtjYNTdLw1TYb5752h1-XD5u5psVo_Pt_drhYdJ0W_0BQcOGoKXTK9LYS2itvCFeCtAEeotIqUQnrHrKXWu_FZyZjwvhS2kIrzGbr58XaDbcE7CH0yTdWlujXpUEVTV3-TUO-rXfyoNCmEGOucoYtfQYrvA-S-auvsoGlMgDjkiilFRSkUL0b0_B_6Foc0ljhSnDJJmNKMfwH8oYAa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312502692</pqid></control><display><type>article</type><title>DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated SnO2 (110) surface</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Li, Meihua ; Zhu, Huichao ; Guangfen Wei ; He, Aixiang ; Liu, Yanli</creator><creatorcontrib>Li, Meihua ; Zhu, Huichao ; Guangfen Wei ; He, Aixiang ; Liu, Yanli</creatorcontrib><description>Methoxy propanol has been widely used in modern industry and consumer products. Inhalation or skin exposure to methoxy propanol for a long period would bring about safety challenges on human habitat and health. Ag decorated SnO2 mesoporous material has been synthesized and shown to exhibit high sensitivity and good selectivity to methoxy propanol among other interferential VOC gases. Density Functional Theory study were conducted to yield insight into the surface–adsorbate interactions and therefore the gas sensing improvement mechanism by presenting accurate energetic and electronic properties for the Ag/SnO2 system. Firstly, an electron transfer model on Ag and SnO2 grain interface was put forward to illustrate the methoxy propanol gas sensing mechanism. Then, a three-layer adsorption model (TLAM) was proposed to investigate methoxy propanol gas sensing properties on a SnO2 (110) surface. In the TLAM method, taking SnO2 (110) surface for the basis, layer 1 illustrates the decoration of metal Ag on SnO2 (110) surface. Layer 2 represents the adsorption of molecular oxygen on metal Ag decorated SnO2 (110) surface. Layer 3 indicates the adsorption of methoxy propanol, and for comparison, three other VOC gases (namely, ethanol, isopropanol and p-xylene) on Ag decorated SnO2 (110) surface with oxygen species pre-adsorbed consecutively. All the adsorption processes were calculated by means of Density Functional Theory method; the adsorption energy, net charge transfer, DOS, PDOS and also experimental data were utilized to investigate the methoxy propanol gas sensing mechanism on Ag decorated SnO2 (110) surface with oxygen species pre-adsorbed.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c9ra02958c</identifier><identifier>PMID: 35528108</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorbates ; Adsorption ; Charge transfer ; Chemistry ; Decoration ; Density functional theory ; Density of states ; Detection ; Electron transfer ; Ethanol ; Gas sensors ; Gases ; Oxygen ; Respiration ; Selectivity ; Silver ; Surface chemistry ; Tin dioxide ; Xylene</subject><ispartof>RSC advances, 2019, Vol.9 (61), p.35862-35871</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9074410/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9074410/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,4025,27928,27929,27930,53796,53798</link.rule.ids></links><search><creatorcontrib>Li, Meihua</creatorcontrib><creatorcontrib>Zhu, Huichao</creatorcontrib><creatorcontrib>Guangfen Wei</creatorcontrib><creatorcontrib>He, Aixiang</creatorcontrib><creatorcontrib>Liu, Yanli</creatorcontrib><title>DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated SnO2 (110) surface</title><title>RSC advances</title><description>Methoxy propanol has been widely used in modern industry and consumer products. Inhalation or skin exposure to methoxy propanol for a long period would bring about safety challenges on human habitat and health. Ag decorated SnO2 mesoporous material has been synthesized and shown to exhibit high sensitivity and good selectivity to methoxy propanol among other interferential VOC gases. Density Functional Theory study were conducted to yield insight into the surface–adsorbate interactions and therefore the gas sensing improvement mechanism by presenting accurate energetic and electronic properties for the Ag/SnO2 system. Firstly, an electron transfer model on Ag and SnO2 grain interface was put forward to illustrate the methoxy propanol gas sensing mechanism. Then, a three-layer adsorption model (TLAM) was proposed to investigate methoxy propanol gas sensing properties on a SnO2 (110) surface. In the TLAM method, taking SnO2 (110) surface for the basis, layer 1 illustrates the decoration of metal Ag on SnO2 (110) surface. Layer 2 represents the adsorption of molecular oxygen on metal Ag decorated SnO2 (110) surface. Layer 3 indicates the adsorption of methoxy propanol, and for comparison, three other VOC gases (namely, ethanol, isopropanol and p-xylene) on Ag decorated SnO2 (110) surface with oxygen species pre-adsorbed consecutively. All the adsorption processes were calculated by means of Density Functional Theory method; the adsorption energy, net charge transfer, DOS, PDOS and also experimental data were utilized to investigate the methoxy propanol gas sensing mechanism on Ag decorated SnO2 (110) surface with oxygen species pre-adsorbed.</description><subject>Adsorbates</subject><subject>Adsorption</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Decoration</subject><subject>Density functional theory</subject><subject>Density of states</subject><subject>Detection</subject><subject>Electron transfer</subject><subject>Ethanol</subject><subject>Gas sensors</subject><subject>Gases</subject><subject>Oxygen</subject><subject>Respiration</subject><subject>Selectivity</subject><subject>Silver</subject><subject>Surface chemistry</subject><subject>Tin dioxide</subject><subject>Xylene</subject><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdBbKm9-AsWvOihut_JXgRRq0KhB-s57Me0jSS7cTcR---N6EUHhjm8Dw_Mi9AZJVeUcH3tdDKEaVm6IzRlRKgFI0pP0DznNzKOkpQpeoImXEpWUlJOUXe_3GBnGjc0pq9jwCb4cU1zyHXGcYv7PeCdyThDyHXY4Rbc3oQ6t99hC_0-fh5wl2JnQmzwKLjdYQ8uJtODxy9hzfAFpeQS5yFtjYNTdLw1TYb5752h1-XD5u5psVo_Pt_drhYdJ0W_0BQcOGoKXTK9LYS2itvCFeCtAEeotIqUQnrHrKXWu_FZyZjwvhS2kIrzGbr58XaDbcE7CH0yTdWlujXpUEVTV3-TUO-rXfyoNCmEGOucoYtfQYrvA-S-auvsoGlMgDjkiilFRSkUL0b0_B_6Foc0ljhSnDJJmNKMfwH8oYAa</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Li, Meihua</creator><creator>Zhu, Huichao</creator><creator>Guangfen Wei</creator><creator>He, Aixiang</creator><creator>Liu, Yanli</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2019</creationdate><title>DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated SnO2 (110) surface</title><author>Li, Meihua ; Zhu, Huichao ; Guangfen Wei ; He, Aixiang ; Liu, Yanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p307t-91ecec1a79829f749b63b7c7edb4ec015b60845dc2bb1bdc0465224dd84b75633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorbates</topic><topic>Adsorption</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Decoration</topic><topic>Density functional theory</topic><topic>Density of states</topic><topic>Detection</topic><topic>Electron transfer</topic><topic>Ethanol</topic><topic>Gas sensors</topic><topic>Gases</topic><topic>Oxygen</topic><topic>Respiration</topic><topic>Selectivity</topic><topic>Silver</topic><topic>Surface chemistry</topic><topic>Tin dioxide</topic><topic>Xylene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Meihua</creatorcontrib><creatorcontrib>Zhu, Huichao</creatorcontrib><creatorcontrib>Guangfen Wei</creatorcontrib><creatorcontrib>He, Aixiang</creatorcontrib><creatorcontrib>Liu, Yanli</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Meihua</au><au>Zhu, Huichao</au><au>Guangfen Wei</au><au>He, Aixiang</au><au>Liu, Yanli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated SnO2 (110) surface</atitle><jtitle>RSC advances</jtitle><date>2019</date><risdate>2019</risdate><volume>9</volume><issue>61</issue><spage>35862</spage><epage>35871</epage><pages>35862-35871</pages><eissn>2046-2069</eissn><abstract>Methoxy propanol has been widely used in modern industry and consumer products. Inhalation or skin exposure to methoxy propanol for a long period would bring about safety challenges on human habitat and health. Ag decorated SnO2 mesoporous material has been synthesized and shown to exhibit high sensitivity and good selectivity to methoxy propanol among other interferential VOC gases. Density Functional Theory study were conducted to yield insight into the surface–adsorbate interactions and therefore the gas sensing improvement mechanism by presenting accurate energetic and electronic properties for the Ag/SnO2 system. Firstly, an electron transfer model on Ag and SnO2 grain interface was put forward to illustrate the methoxy propanol gas sensing mechanism. Then, a three-layer adsorption model (TLAM) was proposed to investigate methoxy propanol gas sensing properties on a SnO2 (110) surface. In the TLAM method, taking SnO2 (110) surface for the basis, layer 1 illustrates the decoration of metal Ag on SnO2 (110) surface. Layer 2 represents the adsorption of molecular oxygen on metal Ag decorated SnO2 (110) surface. Layer 3 indicates the adsorption of methoxy propanol, and for comparison, three other VOC gases (namely, ethanol, isopropanol and p-xylene) on Ag decorated SnO2 (110) surface with oxygen species pre-adsorbed consecutively. All the adsorption processes were calculated by means of Density Functional Theory method; the adsorption energy, net charge transfer, DOS, PDOS and also experimental data were utilized to investigate the methoxy propanol gas sensing mechanism on Ag decorated SnO2 (110) surface with oxygen species pre-adsorbed.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>35528108</pmid><doi>10.1039/c9ra02958c</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2046-2069 |
ispartof | RSC advances, 2019, Vol.9 (61), p.35862-35871 |
issn | 2046-2069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9074410 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
subjects | Adsorbates Adsorption Charge transfer Chemistry Decoration Density functional theory Density of states Detection Electron transfer Ethanol Gas sensors Gases Oxygen Respiration Selectivity Silver Surface chemistry Tin dioxide Xylene |
title | DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated SnO2 (110) surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T15%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DFT%20calculation%20and%20analysis%20of%20the%20gas%20sensing%20mechanism%20of%20methoxy%20propanol%20on%20Ag%20decorated%20SnO2%20(110)%20surface&rft.jtitle=RSC%20advances&rft.au=Li,%20Meihua&rft.date=2019&rft.volume=9&rft.issue=61&rft.spage=35862&rft.epage=35871&rft.pages=35862-35871&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c9ra02958c&rft_dat=%3Cproquest_pubme%3E2312502692%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312502692&rft_id=info:pmid/35528108&rfr_iscdi=true |