Peptide Permeation across a Phosphocholine Membrane: An Atomically Detailed Mechanism Determined through Simulations and Supported by Experimentation

Cell-penetrating peptides (CPPs) facilitate translocation across biological membranes and are of significant biological and medical interest. Several CPPs can permeate into specific cells and organelles. We examine the incorporation and translocation of a novel anticancer CPP in a dioleoylphosphatid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2022-04, Vol.126 (15), p.2834-2849
Hauptverfasser: Cardenas, Alfredo E, Drexler, Chad I, Nechushtai, Rachel, Mittler, Ron, Friedler, Assaf, Webb, Lauren J, Elber, Ron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2849
container_issue 15
container_start_page 2834
container_title The journal of physical chemistry. B
container_volume 126
creator Cardenas, Alfredo E
Drexler, Chad I
Nechushtai, Rachel
Mittler, Ron
Friedler, Assaf
Webb, Lauren J
Elber, Ron
description Cell-penetrating peptides (CPPs) facilitate translocation across biological membranes and are of significant biological and medical interest. Several CPPs can permeate into specific cells and organelles. We examine the incorporation and translocation of a novel anticancer CPP in a dioleoylphosphatidylcholine (DOPC) lipid bilayer membrane. The peptide, NAF-144–67, is a short fragment of a transmembrane protein, consisting of hydrophobic N-terminal and charged C-terminal segments. Experiments using fluorescently labeled NAF-144–67 in ∼100 nm DOPC vesicles and atomically detailed simulations conducted with Milestoning support a model in which a significant barrier for peptide-membrane entry is found at the interface between the aqueous solution and membrane. The initial step is the insertion of the N-terminal segment and the hydrophobic helix into the membrane, passing the hydrophilic head groups. Both experiments and simulations suggest that the free energy difference in the first step of the permeation mechanism in which the hydrophobic helix crosses the phospholipid head groups is −0.4 kcal mol–1 slightly favoring motion into the membrane. Milestoning calculations of the mean first passage time and the committor function underscore the existence of an early polar barrier followed by a diffusive barrierless motion in the lipid tail region. Permeation events are coupled to membrane fluctuations that are examined in detail. Our study opens the way to investigate in atomistic resolution the molecular mechanism, kinetics, and thermodynamics of CPP permeation to diverse membranes.
doi_str_mv 10.1021/acs.jpcb.1c10966
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9074375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648063828</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-63c03847219aa0b9699aec441a0daf42b4847517735813be12945ea2fbddf353</originalsourceid><addsrcrecordid>eNp1Uctu1DAUjRCIlsKeFfKSBTP4FSdhgTQq5SEVMVK7t26cm8aVEwfbQcyH8L94HlSwYGHZ8j2Pq3OK4iWja0Y5ewsmru9n066ZYbRR6lFxzkpOV_lUj09vxag6K57FeE8pL3mtnhZnohR1rZryvPi1xTnZDskWw4iQrJ8ImOBjJEC2g4_z4M3gnZ2QfMWxDTDhO7KZyCb50Rpwbkc-YALrsMsAM8Bk47j_ynqZ1JE0BL_cDeTGjos7GGTpqSM3yzz7kDKi3ZGrnzMGO-KUDojnxZMeXMQXp_uiuP14dXv5eXX97dOXy831CqQQaaWEoaKWFWcNAG0b1TSARkoGtINe8lbmYcmqSpQ1Ey0y3sgSgfdt1_U5g4vi_VF2XtoRO5PtAzg9500g7LQHq_-dTHbQd_6HbmglRbUXeH0SCP77gjHp0UaDzuWU_BI1V7KmStS8zlB6hB7CDdg_2DCq92XqXKbel6lPZWbKq7_XeyD8aS8D3hwBB6pfwpTD-r_eb6XUr7s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648063828</pqid></control><display><type>article</type><title>Peptide Permeation across a Phosphocholine Membrane: An Atomically Detailed Mechanism Determined through Simulations and Supported by Experimentation</title><source>ACS Publications</source><source>MEDLINE</source><creator>Cardenas, Alfredo E ; Drexler, Chad I ; Nechushtai, Rachel ; Mittler, Ron ; Friedler, Assaf ; Webb, Lauren J ; Elber, Ron</creator><creatorcontrib>Cardenas, Alfredo E ; Drexler, Chad I ; Nechushtai, Rachel ; Mittler, Ron ; Friedler, Assaf ; Webb, Lauren J ; Elber, Ron</creatorcontrib><description>Cell-penetrating peptides (CPPs) facilitate translocation across biological membranes and are of significant biological and medical interest. Several CPPs can permeate into specific cells and organelles. We examine the incorporation and translocation of a novel anticancer CPP in a dioleoylphosphatidylcholine (DOPC) lipid bilayer membrane. The peptide, NAF-144–67, is a short fragment of a transmembrane protein, consisting of hydrophobic N-terminal and charged C-terminal segments. Experiments using fluorescently labeled NAF-144–67 in ∼100 nm DOPC vesicles and atomically detailed simulations conducted with Milestoning support a model in which a significant barrier for peptide-membrane entry is found at the interface between the aqueous solution and membrane. The initial step is the insertion of the N-terminal segment and the hydrophobic helix into the membrane, passing the hydrophilic head groups. Both experiments and simulations suggest that the free energy difference in the first step of the permeation mechanism in which the hydrophobic helix crosses the phospholipid head groups is −0.4 kcal mol–1 slightly favoring motion into the membrane. Milestoning calculations of the mean first passage time and the committor function underscore the existence of an early polar barrier followed by a diffusive barrierless motion in the lipid tail region. Permeation events are coupled to membrane fluctuations that are examined in detail. Our study opens the way to investigate in atomistic resolution the molecular mechanism, kinetics, and thermodynamics of CPP permeation to diverse membranes.</description><identifier>ISSN: 1520-6106</identifier><identifier>ISSN: 1520-5207</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.1c10966</identifier><identifier>PMID: 35388695</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Biomaterials and Membranes ; Cell-Penetrating Peptides - chemistry ; Kinetics ; Lipid Bilayers - chemistry ; Phosphorylcholine ; Thermodynamics</subject><ispartof>The journal of physical chemistry. B, 2022-04, Vol.126 (15), p.2834-2849</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-63c03847219aa0b9699aec441a0daf42b4847517735813be12945ea2fbddf353</citedby><cites>FETCH-LOGICAL-a433t-63c03847219aa0b9699aec441a0daf42b4847517735813be12945ea2fbddf353</cites><orcidid>0000-0001-7849-415X ; 0000-0001-9999-5500 ; 0000-0003-1592-1278 ; 0000-0002-9989-968X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.1c10966$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.1c10966$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35388695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cardenas, Alfredo E</creatorcontrib><creatorcontrib>Drexler, Chad I</creatorcontrib><creatorcontrib>Nechushtai, Rachel</creatorcontrib><creatorcontrib>Mittler, Ron</creatorcontrib><creatorcontrib>Friedler, Assaf</creatorcontrib><creatorcontrib>Webb, Lauren J</creatorcontrib><creatorcontrib>Elber, Ron</creatorcontrib><title>Peptide Permeation across a Phosphocholine Membrane: An Atomically Detailed Mechanism Determined through Simulations and Supported by Experimentation</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Cell-penetrating peptides (CPPs) facilitate translocation across biological membranes and are of significant biological and medical interest. Several CPPs can permeate into specific cells and organelles. We examine the incorporation and translocation of a novel anticancer CPP in a dioleoylphosphatidylcholine (DOPC) lipid bilayer membrane. The peptide, NAF-144–67, is a short fragment of a transmembrane protein, consisting of hydrophobic N-terminal and charged C-terminal segments. Experiments using fluorescently labeled NAF-144–67 in ∼100 nm DOPC vesicles and atomically detailed simulations conducted with Milestoning support a model in which a significant barrier for peptide-membrane entry is found at the interface between the aqueous solution and membrane. The initial step is the insertion of the N-terminal segment and the hydrophobic helix into the membrane, passing the hydrophilic head groups. Both experiments and simulations suggest that the free energy difference in the first step of the permeation mechanism in which the hydrophobic helix crosses the phospholipid head groups is −0.4 kcal mol–1 slightly favoring motion into the membrane. Milestoning calculations of the mean first passage time and the committor function underscore the existence of an early polar barrier followed by a diffusive barrierless motion in the lipid tail region. Permeation events are coupled to membrane fluctuations that are examined in detail. Our study opens the way to investigate in atomistic resolution the molecular mechanism, kinetics, and thermodynamics of CPP permeation to diverse membranes.</description><subject>B: Biomaterials and Membranes</subject><subject>Cell-Penetrating Peptides - chemistry</subject><subject>Kinetics</subject><subject>Lipid Bilayers - chemistry</subject><subject>Phosphorylcholine</subject><subject>Thermodynamics</subject><issn>1520-6106</issn><issn>1520-5207</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1Uctu1DAUjRCIlsKeFfKSBTP4FSdhgTQq5SEVMVK7t26cm8aVEwfbQcyH8L94HlSwYGHZ8j2Pq3OK4iWja0Y5ewsmru9n066ZYbRR6lFxzkpOV_lUj09vxag6K57FeE8pL3mtnhZnohR1rZryvPi1xTnZDskWw4iQrJ8ImOBjJEC2g4_z4M3gnZ2QfMWxDTDhO7KZyCb50Rpwbkc-YALrsMsAM8Bk47j_ynqZ1JE0BL_cDeTGjos7GGTpqSM3yzz7kDKi3ZGrnzMGO-KUDojnxZMeXMQXp_uiuP14dXv5eXX97dOXy831CqQQaaWEoaKWFWcNAG0b1TSARkoGtINe8lbmYcmqSpQ1Ey0y3sgSgfdt1_U5g4vi_VF2XtoRO5PtAzg9500g7LQHq_-dTHbQd_6HbmglRbUXeH0SCP77gjHp0UaDzuWU_BI1V7KmStS8zlB6hB7CDdg_2DCq92XqXKbel6lPZWbKq7_XeyD8aS8D3hwBB6pfwpTD-r_eb6XUr7s</recordid><startdate>20220421</startdate><enddate>20220421</enddate><creator>Cardenas, Alfredo E</creator><creator>Drexler, Chad I</creator><creator>Nechushtai, Rachel</creator><creator>Mittler, Ron</creator><creator>Friedler, Assaf</creator><creator>Webb, Lauren J</creator><creator>Elber, Ron</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7849-415X</orcidid><orcidid>https://orcid.org/0000-0001-9999-5500</orcidid><orcidid>https://orcid.org/0000-0003-1592-1278</orcidid><orcidid>https://orcid.org/0000-0002-9989-968X</orcidid></search><sort><creationdate>20220421</creationdate><title>Peptide Permeation across a Phosphocholine Membrane: An Atomically Detailed Mechanism Determined through Simulations and Supported by Experimentation</title><author>Cardenas, Alfredo E ; Drexler, Chad I ; Nechushtai, Rachel ; Mittler, Ron ; Friedler, Assaf ; Webb, Lauren J ; Elber, Ron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-63c03847219aa0b9699aec441a0daf42b4847517735813be12945ea2fbddf353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>B: Biomaterials and Membranes</topic><topic>Cell-Penetrating Peptides - chemistry</topic><topic>Kinetics</topic><topic>Lipid Bilayers - chemistry</topic><topic>Phosphorylcholine</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardenas, Alfredo E</creatorcontrib><creatorcontrib>Drexler, Chad I</creatorcontrib><creatorcontrib>Nechushtai, Rachel</creatorcontrib><creatorcontrib>Mittler, Ron</creatorcontrib><creatorcontrib>Friedler, Assaf</creatorcontrib><creatorcontrib>Webb, Lauren J</creatorcontrib><creatorcontrib>Elber, Ron</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardenas, Alfredo E</au><au>Drexler, Chad I</au><au>Nechushtai, Rachel</au><au>Mittler, Ron</au><au>Friedler, Assaf</au><au>Webb, Lauren J</au><au>Elber, Ron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peptide Permeation across a Phosphocholine Membrane: An Atomically Detailed Mechanism Determined through Simulations and Supported by Experimentation</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2022-04-21</date><risdate>2022</risdate><volume>126</volume><issue>15</issue><spage>2834</spage><epage>2849</epage><pages>2834-2849</pages><issn>1520-6106</issn><issn>1520-5207</issn><eissn>1520-5207</eissn><abstract>Cell-penetrating peptides (CPPs) facilitate translocation across biological membranes and are of significant biological and medical interest. Several CPPs can permeate into specific cells and organelles. We examine the incorporation and translocation of a novel anticancer CPP in a dioleoylphosphatidylcholine (DOPC) lipid bilayer membrane. The peptide, NAF-144–67, is a short fragment of a transmembrane protein, consisting of hydrophobic N-terminal and charged C-terminal segments. Experiments using fluorescently labeled NAF-144–67 in ∼100 nm DOPC vesicles and atomically detailed simulations conducted with Milestoning support a model in which a significant barrier for peptide-membrane entry is found at the interface between the aqueous solution and membrane. The initial step is the insertion of the N-terminal segment and the hydrophobic helix into the membrane, passing the hydrophilic head groups. Both experiments and simulations suggest that the free energy difference in the first step of the permeation mechanism in which the hydrophobic helix crosses the phospholipid head groups is −0.4 kcal mol–1 slightly favoring motion into the membrane. Milestoning calculations of the mean first passage time and the committor function underscore the existence of an early polar barrier followed by a diffusive barrierless motion in the lipid tail region. Permeation events are coupled to membrane fluctuations that are examined in detail. Our study opens the way to investigate in atomistic resolution the molecular mechanism, kinetics, and thermodynamics of CPP permeation to diverse membranes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35388695</pmid><doi>10.1021/acs.jpcb.1c10966</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7849-415X</orcidid><orcidid>https://orcid.org/0000-0001-9999-5500</orcidid><orcidid>https://orcid.org/0000-0003-1592-1278</orcidid><orcidid>https://orcid.org/0000-0002-9989-968X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2022-04, Vol.126 (15), p.2834-2849
issn 1520-6106
1520-5207
1520-5207
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9074375
source ACS Publications; MEDLINE
subjects B: Biomaterials and Membranes
Cell-Penetrating Peptides - chemistry
Kinetics
Lipid Bilayers - chemistry
Phosphorylcholine
Thermodynamics
title Peptide Permeation across a Phosphocholine Membrane: An Atomically Detailed Mechanism Determined through Simulations and Supported by Experimentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peptide%20Permeation%20across%20a%20Phosphocholine%20Membrane:%20An%20Atomically%20Detailed%20Mechanism%20Determined%20through%20Simulations%20and%20Supported%20by%20Experimentation&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Cardenas,%20Alfredo%20E&rft.date=2022-04-21&rft.volume=126&rft.issue=15&rft.spage=2834&rft.epage=2849&rft.pages=2834-2849&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.1c10966&rft_dat=%3Cproquest_pubme%3E2648063828%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648063828&rft_id=info:pmid/35388695&rfr_iscdi=true