Peptide Permeation across a Phosphocholine Membrane: An Atomically Detailed Mechanism Determined through Simulations and Supported by Experimentation
Cell-penetrating peptides (CPPs) facilitate translocation across biological membranes and are of significant biological and medical interest. Several CPPs can permeate into specific cells and organelles. We examine the incorporation and translocation of a novel anticancer CPP in a dioleoylphosphatid...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2022-04, Vol.126 (15), p.2834-2849 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2849 |
---|---|
container_issue | 15 |
container_start_page | 2834 |
container_title | The journal of physical chemistry. B |
container_volume | 126 |
creator | Cardenas, Alfredo E Drexler, Chad I Nechushtai, Rachel Mittler, Ron Friedler, Assaf Webb, Lauren J Elber, Ron |
description | Cell-penetrating peptides (CPPs) facilitate translocation across biological membranes and are of significant biological and medical interest. Several CPPs can permeate into specific cells and organelles. We examine the incorporation and translocation of a novel anticancer CPP in a dioleoylphosphatidylcholine (DOPC) lipid bilayer membrane. The peptide, NAF-144–67, is a short fragment of a transmembrane protein, consisting of hydrophobic N-terminal and charged C-terminal segments. Experiments using fluorescently labeled NAF-144–67 in ∼100 nm DOPC vesicles and atomically detailed simulations conducted with Milestoning support a model in which a significant barrier for peptide-membrane entry is found at the interface between the aqueous solution and membrane. The initial step is the insertion of the N-terminal segment and the hydrophobic helix into the membrane, passing the hydrophilic head groups. Both experiments and simulations suggest that the free energy difference in the first step of the permeation mechanism in which the hydrophobic helix crosses the phospholipid head groups is −0.4 kcal mol–1 slightly favoring motion into the membrane. Milestoning calculations of the mean first passage time and the committor function underscore the existence of an early polar barrier followed by a diffusive barrierless motion in the lipid tail region. Permeation events are coupled to membrane fluctuations that are examined in detail. Our study opens the way to investigate in atomistic resolution the molecular mechanism, kinetics, and thermodynamics of CPP permeation to diverse membranes. |
doi_str_mv | 10.1021/acs.jpcb.1c10966 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9074375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648063828</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-63c03847219aa0b9699aec441a0daf42b4847517735813be12945ea2fbddf353</originalsourceid><addsrcrecordid>eNp1Uctu1DAUjRCIlsKeFfKSBTP4FSdhgTQq5SEVMVK7t26cm8aVEwfbQcyH8L94HlSwYGHZ8j2Pq3OK4iWja0Y5ewsmru9n066ZYbRR6lFxzkpOV_lUj09vxag6K57FeE8pL3mtnhZnohR1rZryvPi1xTnZDskWw4iQrJ8ImOBjJEC2g4_z4M3gnZ2QfMWxDTDhO7KZyCb50Rpwbkc-YALrsMsAM8Bk47j_ynqZ1JE0BL_cDeTGjos7GGTpqSM3yzz7kDKi3ZGrnzMGO-KUDojnxZMeXMQXp_uiuP14dXv5eXX97dOXy831CqQQaaWEoaKWFWcNAG0b1TSARkoGtINe8lbmYcmqSpQ1Ey0y3sgSgfdt1_U5g4vi_VF2XtoRO5PtAzg9500g7LQHq_-dTHbQd_6HbmglRbUXeH0SCP77gjHp0UaDzuWU_BI1V7KmStS8zlB6hB7CDdg_2DCq92XqXKbel6lPZWbKq7_XeyD8aS8D3hwBB6pfwpTD-r_eb6XUr7s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648063828</pqid></control><display><type>article</type><title>Peptide Permeation across a Phosphocholine Membrane: An Atomically Detailed Mechanism Determined through Simulations and Supported by Experimentation</title><source>ACS Publications</source><source>MEDLINE</source><creator>Cardenas, Alfredo E ; Drexler, Chad I ; Nechushtai, Rachel ; Mittler, Ron ; Friedler, Assaf ; Webb, Lauren J ; Elber, Ron</creator><creatorcontrib>Cardenas, Alfredo E ; Drexler, Chad I ; Nechushtai, Rachel ; Mittler, Ron ; Friedler, Assaf ; Webb, Lauren J ; Elber, Ron</creatorcontrib><description>Cell-penetrating peptides (CPPs) facilitate translocation across biological membranes and are of significant biological and medical interest. Several CPPs can permeate into specific cells and organelles. We examine the incorporation and translocation of a novel anticancer CPP in a dioleoylphosphatidylcholine (DOPC) lipid bilayer membrane. The peptide, NAF-144–67, is a short fragment of a transmembrane protein, consisting of hydrophobic N-terminal and charged C-terminal segments. Experiments using fluorescently labeled NAF-144–67 in ∼100 nm DOPC vesicles and atomically detailed simulations conducted with Milestoning support a model in which a significant barrier for peptide-membrane entry is found at the interface between the aqueous solution and membrane. The initial step is the insertion of the N-terminal segment and the hydrophobic helix into the membrane, passing the hydrophilic head groups. Both experiments and simulations suggest that the free energy difference in the first step of the permeation mechanism in which the hydrophobic helix crosses the phospholipid head groups is −0.4 kcal mol–1 slightly favoring motion into the membrane. Milestoning calculations of the mean first passage time and the committor function underscore the existence of an early polar barrier followed by a diffusive barrierless motion in the lipid tail region. Permeation events are coupled to membrane fluctuations that are examined in detail. Our study opens the way to investigate in atomistic resolution the molecular mechanism, kinetics, and thermodynamics of CPP permeation to diverse membranes.</description><identifier>ISSN: 1520-6106</identifier><identifier>ISSN: 1520-5207</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.1c10966</identifier><identifier>PMID: 35388695</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Biomaterials and Membranes ; Cell-Penetrating Peptides - chemistry ; Kinetics ; Lipid Bilayers - chemistry ; Phosphorylcholine ; Thermodynamics</subject><ispartof>The journal of physical chemistry. B, 2022-04, Vol.126 (15), p.2834-2849</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-63c03847219aa0b9699aec441a0daf42b4847517735813be12945ea2fbddf353</citedby><cites>FETCH-LOGICAL-a433t-63c03847219aa0b9699aec441a0daf42b4847517735813be12945ea2fbddf353</cites><orcidid>0000-0001-7849-415X ; 0000-0001-9999-5500 ; 0000-0003-1592-1278 ; 0000-0002-9989-968X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.1c10966$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.1c10966$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35388695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cardenas, Alfredo E</creatorcontrib><creatorcontrib>Drexler, Chad I</creatorcontrib><creatorcontrib>Nechushtai, Rachel</creatorcontrib><creatorcontrib>Mittler, Ron</creatorcontrib><creatorcontrib>Friedler, Assaf</creatorcontrib><creatorcontrib>Webb, Lauren J</creatorcontrib><creatorcontrib>Elber, Ron</creatorcontrib><title>Peptide Permeation across a Phosphocholine Membrane: An Atomically Detailed Mechanism Determined through Simulations and Supported by Experimentation</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Cell-penetrating peptides (CPPs) facilitate translocation across biological membranes and are of significant biological and medical interest. Several CPPs can permeate into specific cells and organelles. We examine the incorporation and translocation of a novel anticancer CPP in a dioleoylphosphatidylcholine (DOPC) lipid bilayer membrane. The peptide, NAF-144–67, is a short fragment of a transmembrane protein, consisting of hydrophobic N-terminal and charged C-terminal segments. Experiments using fluorescently labeled NAF-144–67 in ∼100 nm DOPC vesicles and atomically detailed simulations conducted with Milestoning support a model in which a significant barrier for peptide-membrane entry is found at the interface between the aqueous solution and membrane. The initial step is the insertion of the N-terminal segment and the hydrophobic helix into the membrane, passing the hydrophilic head groups. Both experiments and simulations suggest that the free energy difference in the first step of the permeation mechanism in which the hydrophobic helix crosses the phospholipid head groups is −0.4 kcal mol–1 slightly favoring motion into the membrane. Milestoning calculations of the mean first passage time and the committor function underscore the existence of an early polar barrier followed by a diffusive barrierless motion in the lipid tail region. Permeation events are coupled to membrane fluctuations that are examined in detail. Our study opens the way to investigate in atomistic resolution the molecular mechanism, kinetics, and thermodynamics of CPP permeation to diverse membranes.</description><subject>B: Biomaterials and Membranes</subject><subject>Cell-Penetrating Peptides - chemistry</subject><subject>Kinetics</subject><subject>Lipid Bilayers - chemistry</subject><subject>Phosphorylcholine</subject><subject>Thermodynamics</subject><issn>1520-6106</issn><issn>1520-5207</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1Uctu1DAUjRCIlsKeFfKSBTP4FSdhgTQq5SEVMVK7t26cm8aVEwfbQcyH8L94HlSwYGHZ8j2Pq3OK4iWja0Y5ewsmru9n066ZYbRR6lFxzkpOV_lUj09vxag6K57FeE8pL3mtnhZnohR1rZryvPi1xTnZDskWw4iQrJ8ImOBjJEC2g4_z4M3gnZ2QfMWxDTDhO7KZyCb50Rpwbkc-YALrsMsAM8Bk47j_ynqZ1JE0BL_cDeTGjos7GGTpqSM3yzz7kDKi3ZGrnzMGO-KUDojnxZMeXMQXp_uiuP14dXv5eXX97dOXy831CqQQaaWEoaKWFWcNAG0b1TSARkoGtINe8lbmYcmqSpQ1Ey0y3sgSgfdt1_U5g4vi_VF2XtoRO5PtAzg9500g7LQHq_-dTHbQd_6HbmglRbUXeH0SCP77gjHp0UaDzuWU_BI1V7KmStS8zlB6hB7CDdg_2DCq92XqXKbel6lPZWbKq7_XeyD8aS8D3hwBB6pfwpTD-r_eb6XUr7s</recordid><startdate>20220421</startdate><enddate>20220421</enddate><creator>Cardenas, Alfredo E</creator><creator>Drexler, Chad I</creator><creator>Nechushtai, Rachel</creator><creator>Mittler, Ron</creator><creator>Friedler, Assaf</creator><creator>Webb, Lauren J</creator><creator>Elber, Ron</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7849-415X</orcidid><orcidid>https://orcid.org/0000-0001-9999-5500</orcidid><orcidid>https://orcid.org/0000-0003-1592-1278</orcidid><orcidid>https://orcid.org/0000-0002-9989-968X</orcidid></search><sort><creationdate>20220421</creationdate><title>Peptide Permeation across a Phosphocholine Membrane: An Atomically Detailed Mechanism Determined through Simulations and Supported by Experimentation</title><author>Cardenas, Alfredo E ; Drexler, Chad I ; Nechushtai, Rachel ; Mittler, Ron ; Friedler, Assaf ; Webb, Lauren J ; Elber, Ron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-63c03847219aa0b9699aec441a0daf42b4847517735813be12945ea2fbddf353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>B: Biomaterials and Membranes</topic><topic>Cell-Penetrating Peptides - chemistry</topic><topic>Kinetics</topic><topic>Lipid Bilayers - chemistry</topic><topic>Phosphorylcholine</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardenas, Alfredo E</creatorcontrib><creatorcontrib>Drexler, Chad I</creatorcontrib><creatorcontrib>Nechushtai, Rachel</creatorcontrib><creatorcontrib>Mittler, Ron</creatorcontrib><creatorcontrib>Friedler, Assaf</creatorcontrib><creatorcontrib>Webb, Lauren J</creatorcontrib><creatorcontrib>Elber, Ron</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardenas, Alfredo E</au><au>Drexler, Chad I</au><au>Nechushtai, Rachel</au><au>Mittler, Ron</au><au>Friedler, Assaf</au><au>Webb, Lauren J</au><au>Elber, Ron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peptide Permeation across a Phosphocholine Membrane: An Atomically Detailed Mechanism Determined through Simulations and Supported by Experimentation</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2022-04-21</date><risdate>2022</risdate><volume>126</volume><issue>15</issue><spage>2834</spage><epage>2849</epage><pages>2834-2849</pages><issn>1520-6106</issn><issn>1520-5207</issn><eissn>1520-5207</eissn><abstract>Cell-penetrating peptides (CPPs) facilitate translocation across biological membranes and are of significant biological and medical interest. Several CPPs can permeate into specific cells and organelles. We examine the incorporation and translocation of a novel anticancer CPP in a dioleoylphosphatidylcholine (DOPC) lipid bilayer membrane. The peptide, NAF-144–67, is a short fragment of a transmembrane protein, consisting of hydrophobic N-terminal and charged C-terminal segments. Experiments using fluorescently labeled NAF-144–67 in ∼100 nm DOPC vesicles and atomically detailed simulations conducted with Milestoning support a model in which a significant barrier for peptide-membrane entry is found at the interface between the aqueous solution and membrane. The initial step is the insertion of the N-terminal segment and the hydrophobic helix into the membrane, passing the hydrophilic head groups. Both experiments and simulations suggest that the free energy difference in the first step of the permeation mechanism in which the hydrophobic helix crosses the phospholipid head groups is −0.4 kcal mol–1 slightly favoring motion into the membrane. Milestoning calculations of the mean first passage time and the committor function underscore the existence of an early polar barrier followed by a diffusive barrierless motion in the lipid tail region. Permeation events are coupled to membrane fluctuations that are examined in detail. Our study opens the way to investigate in atomistic resolution the molecular mechanism, kinetics, and thermodynamics of CPP permeation to diverse membranes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35388695</pmid><doi>10.1021/acs.jpcb.1c10966</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7849-415X</orcidid><orcidid>https://orcid.org/0000-0001-9999-5500</orcidid><orcidid>https://orcid.org/0000-0003-1592-1278</orcidid><orcidid>https://orcid.org/0000-0002-9989-968X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2022-04, Vol.126 (15), p.2834-2849 |
issn | 1520-6106 1520-5207 1520-5207 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9074375 |
source | ACS Publications; MEDLINE |
subjects | B: Biomaterials and Membranes Cell-Penetrating Peptides - chemistry Kinetics Lipid Bilayers - chemistry Phosphorylcholine Thermodynamics |
title | Peptide Permeation across a Phosphocholine Membrane: An Atomically Detailed Mechanism Determined through Simulations and Supported by Experimentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peptide%20Permeation%20across%20a%20Phosphocholine%20Membrane:%20An%20Atomically%20Detailed%20Mechanism%20Determined%20through%20Simulations%20and%20Supported%20by%20Experimentation&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Cardenas,%20Alfredo%20E&rft.date=2022-04-21&rft.volume=126&rft.issue=15&rft.spage=2834&rft.epage=2849&rft.pages=2834-2849&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.1c10966&rft_dat=%3Cproquest_pubme%3E2648063828%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648063828&rft_id=info:pmid/35388695&rfr_iscdi=true |