Biofunctionalization of Graphene‐Based FET Sensors through Heterobifunctional Nanoscaffolds: Technology Validation toward Rapid COVID‐19 Diagnostics and Monitoring
The biofunctionalization of graphene field‐effect transistors (GFETs) through vinylsulfonated‐polyethyleneimine nanoscaffold is presented for enhanced biosensing of severe acute respiratory‐related coronavirus 2 (SARS‐CoV‐2) spike protein and human ferritin, two targets of great importance for the r...
Gespeichert in:
Veröffentlicht in: | Advanced materials interfaces 2022-05, Vol.9 (15), p.2102526-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 15 |
container_start_page | 2102526 |
container_title | Advanced materials interfaces |
container_volume | 9 |
creator | Piccinini, Esteban Fenoy, Gonzalo E. Cantillo, Agustín L. Allegretto, Juan A. Scotto, Juliana Piccinini, José M. Marmisollé, Waldemar A. Azzaroni, Omar |
description | The biofunctionalization of graphene field‐effect transistors (GFETs) through vinylsulfonated‐polyethyleneimine nanoscaffold is presented for enhanced biosensing of severe acute respiratory‐related coronavirus 2 (SARS‐CoV‐2) spike protein and human ferritin, two targets of great importance for the rapid diagnostic and monitoring of individuals with COVID‐19. The heterobifunctional nanoscaffold enables covalent immobilization of binding proteins and antifouling polymers while the whole architecture is attached to graphene by multivalent π–π interactions. First, to optimize the sensing platform, concanavalin A is employed for glycoprotein detection. Then, monoclonal antibodies specific against SARS‐CoV‐2 spike protein and human ferritin are anchored, yielding biosensors with limit of detections of 0.74 and 0.23 nm, and apparent affinity constants (KDGFET) of 6.7 and 8.8 nm, respectively. Both biosensing platforms show good specificity, fast time response, and wide dynamic range (0.1–100 nm). Moreover, SARS‐CoV‐2 spike protein is also detected in spiked nasopharyngeal swab samples. To rigorously validate this biosensing technology, the GFET response is matched with surface plasmon resonance measurements, exhibiting linear correlations (from 2 to 100 ng cm−2) and good agreement in terms of KD values. Finally, the performance of the biosensors fabricated through the nanoscaffold strategy is compared with those obtained through the widely employed monopyrene approach, showing enhanced sensitivity.
The biofunctionalization of graphene field‐effect transistors through vinyl‐sulfonated polyethyleneimine nanoscaffold allows the immobilization of antifouling and recognition elements, yielding biosensors able to detect human ferritin and severe acute respiratory‐related coronavirus 2 spike protein in spiked nasopharyngeal swab samples. The developed technology is validated through the comparison with surface plasmon resonance measurements, and also with the widely employed monopyrene‐based biofunctionalization approach. |
doi_str_mv | 10.1002/admi.202102526 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9073996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667947185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4686-3064db823ce0ab80d568884fd1f03f0b444e9188a3351ca24448b147fbbc98ef3</originalsourceid><addsrcrecordid>eNqFks1uEzEQgFcIRKvSK0dkiQuXBP_sem0OSG0CbaSWSlB6tbz-2XW1sVN7lyqceATegvfiSXBISQsXTh7L33wztqconiM4RRDi11Iv3RRDjCCuMH1U7GPE6aQmFXz8IN4rDlO6hhAihBFm5GmxR6qKMI6r_eLHsQt29GpwwcvefZWbAAQLTqJcdcabn9--H8tkNHj_7hJ8Mj6FmMDQxTC2HTg1g4mhcfcG8EH6kJS0NvQ6vQGXRnU-9KFdg6vs11v_EG5l1OCjXDkNZhdXi3kugziYO9nm9MGpBKTX4Dx4N4TofPuseGJln8zh3XpQfM4NzU4nZxcni9nR2USVlNEJgbTUDcNEGSgbBnVFGWOl1chCYmFTlqXhiDFJSIWUxHnPGlTWtmkUZ8aSg-Lt1rsam6XRyvghyl6solvKuBZBOvH3iXedaMMXwWFNOKdZ8OpOEMPNaNIgli4p0_fSmzAmgSnFVUlqxDP68h_0OowxP-JvquZljViVqemWUjGkFI3dNYOg2IyB2IyB2I1BTnjx8Ao7_M-nZ4BvgVvXm_V_dOJofr64l_8CAC7EJg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667947185</pqid></control><display><type>article</type><title>Biofunctionalization of Graphene‐Based FET Sensors through Heterobifunctional Nanoscaffolds: Technology Validation toward Rapid COVID‐19 Diagnostics and Monitoring</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Piccinini, Esteban ; Fenoy, Gonzalo E. ; Cantillo, Agustín L. ; Allegretto, Juan A. ; Scotto, Juliana ; Piccinini, José M. ; Marmisollé, Waldemar A. ; Azzaroni, Omar</creator><creatorcontrib>Piccinini, Esteban ; Fenoy, Gonzalo E. ; Cantillo, Agustín L. ; Allegretto, Juan A. ; Scotto, Juliana ; Piccinini, José M. ; Marmisollé, Waldemar A. ; Azzaroni, Omar</creatorcontrib><description>The biofunctionalization of graphene field‐effect transistors (GFETs) through vinylsulfonated‐polyethyleneimine nanoscaffold is presented for enhanced biosensing of severe acute respiratory‐related coronavirus 2 (SARS‐CoV‐2) spike protein and human ferritin, two targets of great importance for the rapid diagnostic and monitoring of individuals with COVID‐19. The heterobifunctional nanoscaffold enables covalent immobilization of binding proteins and antifouling polymers while the whole architecture is attached to graphene by multivalent π–π interactions. First, to optimize the sensing platform, concanavalin A is employed for glycoprotein detection. Then, monoclonal antibodies specific against SARS‐CoV‐2 spike protein and human ferritin are anchored, yielding biosensors with limit of detections of 0.74 and 0.23 nm, and apparent affinity constants (KDGFET) of 6.7 and 8.8 nm, respectively. Both biosensing platforms show good specificity, fast time response, and wide dynamic range (0.1–100 nm). Moreover, SARS‐CoV‐2 spike protein is also detected in spiked nasopharyngeal swab samples. To rigorously validate this biosensing technology, the GFET response is matched with surface plasmon resonance measurements, exhibiting linear correlations (from 2 to 100 ng cm−2) and good agreement in terms of KD values. Finally, the performance of the biosensors fabricated through the nanoscaffold strategy is compared with those obtained through the widely employed monopyrene approach, showing enhanced sensitivity.
The biofunctionalization of graphene field‐effect transistors through vinyl‐sulfonated polyethyleneimine nanoscaffold allows the immobilization of antifouling and recognition elements, yielding biosensors able to detect human ferritin and severe acute respiratory‐related coronavirus 2 spike protein in spiked nasopharyngeal swab samples. The developed technology is validated through the comparison with surface plasmon resonance measurements, and also with the widely employed monopyrene‐based biofunctionalization approach.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.202102526</identifier><identifier>PMID: 35538925</identifier><language>eng</language><publisher>Germany: John Wiley & Sons, Inc</publisher><subject>Biosensors ; Concanavalin A ; COVID-19 ; Ferritin ; Field effect transistors ; Glycoproteins ; Graphene ; Monitoring ; Monoclonal antibodies ; Polyethyleneimine ; Proteins ; Sensitivity enhancement ; severe acute respiratory‐related coronavirus 2 ; spike protein ; surface plasmon resonance ; Time response</subject><ispartof>Advanced materials interfaces, 2022-05, Vol.9 (15), p.2102526-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4686-3064db823ce0ab80d568884fd1f03f0b444e9188a3351ca24448b147fbbc98ef3</citedby><cites>FETCH-LOGICAL-c4686-3064db823ce0ab80d568884fd1f03f0b444e9188a3351ca24448b147fbbc98ef3</cites><orcidid>0000-0002-5098-0612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.202102526$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.202102526$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35538925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Piccinini, Esteban</creatorcontrib><creatorcontrib>Fenoy, Gonzalo E.</creatorcontrib><creatorcontrib>Cantillo, Agustín L.</creatorcontrib><creatorcontrib>Allegretto, Juan A.</creatorcontrib><creatorcontrib>Scotto, Juliana</creatorcontrib><creatorcontrib>Piccinini, José M.</creatorcontrib><creatorcontrib>Marmisollé, Waldemar A.</creatorcontrib><creatorcontrib>Azzaroni, Omar</creatorcontrib><title>Biofunctionalization of Graphene‐Based FET Sensors through Heterobifunctional Nanoscaffolds: Technology Validation toward Rapid COVID‐19 Diagnostics and Monitoring</title><title>Advanced materials interfaces</title><addtitle>Adv Mater Interfaces</addtitle><description>The biofunctionalization of graphene field‐effect transistors (GFETs) through vinylsulfonated‐polyethyleneimine nanoscaffold is presented for enhanced biosensing of severe acute respiratory‐related coronavirus 2 (SARS‐CoV‐2) spike protein and human ferritin, two targets of great importance for the rapid diagnostic and monitoring of individuals with COVID‐19. The heterobifunctional nanoscaffold enables covalent immobilization of binding proteins and antifouling polymers while the whole architecture is attached to graphene by multivalent π–π interactions. First, to optimize the sensing platform, concanavalin A is employed for glycoprotein detection. Then, monoclonal antibodies specific against SARS‐CoV‐2 spike protein and human ferritin are anchored, yielding biosensors with limit of detections of 0.74 and 0.23 nm, and apparent affinity constants (KDGFET) of 6.7 and 8.8 nm, respectively. Both biosensing platforms show good specificity, fast time response, and wide dynamic range (0.1–100 nm). Moreover, SARS‐CoV‐2 spike protein is also detected in spiked nasopharyngeal swab samples. To rigorously validate this biosensing technology, the GFET response is matched with surface plasmon resonance measurements, exhibiting linear correlations (from 2 to 100 ng cm−2) and good agreement in terms of KD values. Finally, the performance of the biosensors fabricated through the nanoscaffold strategy is compared with those obtained through the widely employed monopyrene approach, showing enhanced sensitivity.
The biofunctionalization of graphene field‐effect transistors through vinyl‐sulfonated polyethyleneimine nanoscaffold allows the immobilization of antifouling and recognition elements, yielding biosensors able to detect human ferritin and severe acute respiratory‐related coronavirus 2 spike protein in spiked nasopharyngeal swab samples. The developed technology is validated through the comparison with surface plasmon resonance measurements, and also with the widely employed monopyrene‐based biofunctionalization approach.</description><subject>Biosensors</subject><subject>Concanavalin A</subject><subject>COVID-19</subject><subject>Ferritin</subject><subject>Field effect transistors</subject><subject>Glycoproteins</subject><subject>Graphene</subject><subject>Monitoring</subject><subject>Monoclonal antibodies</subject><subject>Polyethyleneimine</subject><subject>Proteins</subject><subject>Sensitivity enhancement</subject><subject>severe acute respiratory‐related coronavirus 2</subject><subject>spike protein</subject><subject>surface plasmon resonance</subject><subject>Time response</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFks1uEzEQgFcIRKvSK0dkiQuXBP_sem0OSG0CbaSWSlB6tbz-2XW1sVN7lyqceATegvfiSXBISQsXTh7L33wztqconiM4RRDi11Iv3RRDjCCuMH1U7GPE6aQmFXz8IN4rDlO6hhAihBFm5GmxR6qKMI6r_eLHsQt29GpwwcvefZWbAAQLTqJcdcabn9--H8tkNHj_7hJ8Mj6FmMDQxTC2HTg1g4mhcfcG8EH6kJS0NvQ6vQGXRnU-9KFdg6vs11v_EG5l1OCjXDkNZhdXi3kugziYO9nm9MGpBKTX4Dx4N4TofPuseGJln8zh3XpQfM4NzU4nZxcni9nR2USVlNEJgbTUDcNEGSgbBnVFGWOl1chCYmFTlqXhiDFJSIWUxHnPGlTWtmkUZ8aSg-Lt1rsam6XRyvghyl6solvKuBZBOvH3iXedaMMXwWFNOKdZ8OpOEMPNaNIgli4p0_fSmzAmgSnFVUlqxDP68h_0OowxP-JvquZljViVqemWUjGkFI3dNYOg2IyB2IyB2I1BTnjx8Ao7_M-nZ4BvgVvXm_V_dOJofr64l_8CAC7EJg</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Piccinini, Esteban</creator><creator>Fenoy, Gonzalo E.</creator><creator>Cantillo, Agustín L.</creator><creator>Allegretto, Juan A.</creator><creator>Scotto, Juliana</creator><creator>Piccinini, José M.</creator><creator>Marmisollé, Waldemar A.</creator><creator>Azzaroni, Omar</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5098-0612</orcidid></search><sort><creationdate>20220501</creationdate><title>Biofunctionalization of Graphene‐Based FET Sensors through Heterobifunctional Nanoscaffolds: Technology Validation toward Rapid COVID‐19 Diagnostics and Monitoring</title><author>Piccinini, Esteban ; Fenoy, Gonzalo E. ; Cantillo, Agustín L. ; Allegretto, Juan A. ; Scotto, Juliana ; Piccinini, José M. ; Marmisollé, Waldemar A. ; Azzaroni, Omar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4686-3064db823ce0ab80d568884fd1f03f0b444e9188a3351ca24448b147fbbc98ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biosensors</topic><topic>Concanavalin A</topic><topic>COVID-19</topic><topic>Ferritin</topic><topic>Field effect transistors</topic><topic>Glycoproteins</topic><topic>Graphene</topic><topic>Monitoring</topic><topic>Monoclonal antibodies</topic><topic>Polyethyleneimine</topic><topic>Proteins</topic><topic>Sensitivity enhancement</topic><topic>severe acute respiratory‐related coronavirus 2</topic><topic>spike protein</topic><topic>surface plasmon resonance</topic><topic>Time response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piccinini, Esteban</creatorcontrib><creatorcontrib>Fenoy, Gonzalo E.</creatorcontrib><creatorcontrib>Cantillo, Agustín L.</creatorcontrib><creatorcontrib>Allegretto, Juan A.</creatorcontrib><creatorcontrib>Scotto, Juliana</creatorcontrib><creatorcontrib>Piccinini, José M.</creatorcontrib><creatorcontrib>Marmisollé, Waldemar A.</creatorcontrib><creatorcontrib>Azzaroni, Omar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piccinini, Esteban</au><au>Fenoy, Gonzalo E.</au><au>Cantillo, Agustín L.</au><au>Allegretto, Juan A.</au><au>Scotto, Juliana</au><au>Piccinini, José M.</au><au>Marmisollé, Waldemar A.</au><au>Azzaroni, Omar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biofunctionalization of Graphene‐Based FET Sensors through Heterobifunctional Nanoscaffolds: Technology Validation toward Rapid COVID‐19 Diagnostics and Monitoring</atitle><jtitle>Advanced materials interfaces</jtitle><addtitle>Adv Mater Interfaces</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>9</volume><issue>15</issue><spage>2102526</spage><epage>n/a</epage><pages>2102526-n/a</pages><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>The biofunctionalization of graphene field‐effect transistors (GFETs) through vinylsulfonated‐polyethyleneimine nanoscaffold is presented for enhanced biosensing of severe acute respiratory‐related coronavirus 2 (SARS‐CoV‐2) spike protein and human ferritin, two targets of great importance for the rapid diagnostic and monitoring of individuals with COVID‐19. The heterobifunctional nanoscaffold enables covalent immobilization of binding proteins and antifouling polymers while the whole architecture is attached to graphene by multivalent π–π interactions. First, to optimize the sensing platform, concanavalin A is employed for glycoprotein detection. Then, monoclonal antibodies specific against SARS‐CoV‐2 spike protein and human ferritin are anchored, yielding biosensors with limit of detections of 0.74 and 0.23 nm, and apparent affinity constants (KDGFET) of 6.7 and 8.8 nm, respectively. Both biosensing platforms show good specificity, fast time response, and wide dynamic range (0.1–100 nm). Moreover, SARS‐CoV‐2 spike protein is also detected in spiked nasopharyngeal swab samples. To rigorously validate this biosensing technology, the GFET response is matched with surface plasmon resonance measurements, exhibiting linear correlations (from 2 to 100 ng cm−2) and good agreement in terms of KD values. Finally, the performance of the biosensors fabricated through the nanoscaffold strategy is compared with those obtained through the widely employed monopyrene approach, showing enhanced sensitivity.
The biofunctionalization of graphene field‐effect transistors through vinyl‐sulfonated polyethyleneimine nanoscaffold allows the immobilization of antifouling and recognition elements, yielding biosensors able to detect human ferritin and severe acute respiratory‐related coronavirus 2 spike protein in spiked nasopharyngeal swab samples. The developed technology is validated through the comparison with surface plasmon resonance measurements, and also with the widely employed monopyrene‐based biofunctionalization approach.</abstract><cop>Germany</cop><pub>John Wiley & Sons, Inc</pub><pmid>35538925</pmid><doi>10.1002/admi.202102526</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5098-0612</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-7350 |
ispartof | Advanced materials interfaces, 2022-05, Vol.9 (15), p.2102526-n/a |
issn | 2196-7350 2196-7350 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9073996 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Biosensors Concanavalin A COVID-19 Ferritin Field effect transistors Glycoproteins Graphene Monitoring Monoclonal antibodies Polyethyleneimine Proteins Sensitivity enhancement severe acute respiratory‐related coronavirus 2 spike protein surface plasmon resonance Time response |
title | Biofunctionalization of Graphene‐Based FET Sensors through Heterobifunctional Nanoscaffolds: Technology Validation toward Rapid COVID‐19 Diagnostics and Monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A24%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biofunctionalization%20of%20Graphene%E2%80%90Based%20FET%20Sensors%20through%20Heterobifunctional%20Nanoscaffolds:%20Technology%20Validation%20toward%20Rapid%20COVID%E2%80%9019%20Diagnostics%20and%20Monitoring&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Piccinini,%20Esteban&rft.date=2022-05-01&rft.volume=9&rft.issue=15&rft.spage=2102526&rft.epage=n/a&rft.pages=2102526-n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.202102526&rft_dat=%3Cproquest_pubme%3E2667947185%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667947185&rft_id=info:pmid/35538925&rfr_iscdi=true |