Oscillations in K(ATP) conductance drive slow calcium oscillations in pancreatic β-cells
ATP-sensitive K+ (K(ATP)) channels were first reported in the β-cells of pancreatic islets in 1984, and it was soon established that they are the primary means by which the blood glucose level is transduced to cellular electrical activity and consequently insulin secretion. However, the role that th...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2022-04, Vol.121 (8), p.1449-1464 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1464 |
---|---|
container_issue | 8 |
container_start_page | 1449 |
container_title | Biophysical journal |
container_volume | 121 |
creator | Marinelli, Isabella Thompson, Benjamin M. Parekh, Vishal S. Fletcher, Patrick A. Gerardo-Giorda, Luca Sherman, Arthur S. Satin, Leslie S. Bertram, Richard |
description | ATP-sensitive K+ (K(ATP)) channels were first reported in the β-cells of pancreatic islets in 1984, and it was soon established that they are the primary means by which the blood glucose level is transduced to cellular electrical activity and consequently insulin secretion. However, the role that the K(ATP) channels play in driving the bursting electrical activity of islet β-cells, which drives pulsatile insulin secretion, remains unclear. One difficulty is that bursting is abolished when several different ion channel types are blocked pharmacologically or genetically, making it challenging to distinguish causation from correlation. Here, we demonstrate a means for determining whether activity-dependent oscillations in K(ATP) conductance play the primary role in driving electrical bursting in β-cells. We use mathematical models to predict that if K(ATP) is the driver, then contrary to intuition, the mean, peak, and nadir levels of ATP/ADP should be invariant to changes in glucose within the concentration range that supports bursting. We test this in islets using Perceval-HR to image oscillations in ATP/ADP. We find that mean, peak, and nadir levels are indeed approximately invariant, supporting the hypothesis that oscillations in K(ATP) conductance are the main drivers of the slow bursting oscillations typically seen at stimulatory glucose levels in mouse islets. In conclusion, we provide, for the first time to our knowledge, causal evidence for the role of K(ATP) channels not only as the primary target for glucose regulation but also for their role in driving bursting electrical activity and pulsatile insulin secretion. |
doi_str_mv | 10.1016/j.bpj.2022.03.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9072586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349522002259</els_id><sourcerecordid>2640994150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-40e1ccd758caa2bc75d113b6671986e94ac1136c84c5a60d152f5ea27136e43e3</originalsourceid><addsrcrecordid>eNp9kcFO3DAURa0KVKbAB3RTZQmLhGfHdhIhISFUSgUSLGDByvK8vGk9ysSDnUzFb_VD-CY8GoooC1bWs8-9tu9l7CuHggPXR_NiupwXAoQooCyAq09swpUUOUCtt9gEAHReykbtsC8xzgG4UMA_s51SlQCNribs_jqi6zo7ON_HzPXZ5cHp7c1hhr5vRxxsj5S1wa0oi53_k6Ht0I2LzL9TLRMYKM2YPf3Nkbou7rHtme0i7b-su-zu_Pvt2UV-df3j59npVY5S8SGXQByxrVSN1oopVqrlvJxqXfGm1tRIi2nWWEtUVkPLlZgpsqJKmyRLKnfZycZ3OU4X1CL1Q7CdWQa3sOHReOvM_ye9-21--ZVpoBKq1sng4MUg-IeR4mAWLq6_YHvyYzRCS2gayRUklG9QDD7GQLPXaziYdSVmblIlZl2JgdKkSpLm29v3vSr-dZCA4w1AKaWVo2BSuJSCb10gHEzr3Qf2z2oTnfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640994150</pqid></control><display><type>article</type><title>Oscillations in K(ATP) conductance drive slow calcium oscillations in pancreatic β-cells</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Marinelli, Isabella ; Thompson, Benjamin M. ; Parekh, Vishal S. ; Fletcher, Patrick A. ; Gerardo-Giorda, Luca ; Sherman, Arthur S. ; Satin, Leslie S. ; Bertram, Richard</creator><creatorcontrib>Marinelli, Isabella ; Thompson, Benjamin M. ; Parekh, Vishal S. ; Fletcher, Patrick A. ; Gerardo-Giorda, Luca ; Sherman, Arthur S. ; Satin, Leslie S. ; Bertram, Richard</creatorcontrib><description>ATP-sensitive K+ (K(ATP)) channels were first reported in the β-cells of pancreatic islets in 1984, and it was soon established that they are the primary means by which the blood glucose level is transduced to cellular electrical activity and consequently insulin secretion. However, the role that the K(ATP) channels play in driving the bursting electrical activity of islet β-cells, which drives pulsatile insulin secretion, remains unclear. One difficulty is that bursting is abolished when several different ion channel types are blocked pharmacologically or genetically, making it challenging to distinguish causation from correlation. Here, we demonstrate a means for determining whether activity-dependent oscillations in K(ATP) conductance play the primary role in driving electrical bursting in β-cells. We use mathematical models to predict that if K(ATP) is the driver, then contrary to intuition, the mean, peak, and nadir levels of ATP/ADP should be invariant to changes in glucose within the concentration range that supports bursting. We test this in islets using Perceval-HR to image oscillations in ATP/ADP. We find that mean, peak, and nadir levels are indeed approximately invariant, supporting the hypothesis that oscillations in K(ATP) conductance are the main drivers of the slow bursting oscillations typically seen at stimulatory glucose levels in mouse islets. In conclusion, we provide, for the first time to our knowledge, causal evidence for the role of K(ATP) channels not only as the primary target for glucose regulation but also for their role in driving bursting electrical activity and pulsatile insulin secretion.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2022.03.015</identifier><identifier>PMID: 35300967</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Diphosphate - metabolism ; Adenosine Triphosphate - metabolism ; Animals ; Calcium - metabolism ; Calcium Signaling - physiology ; Glucose - metabolism ; Glucose - pharmacology ; Insulin - metabolism ; Islets of Langerhans - metabolism ; Membrane Potentials - physiology ; Mice</subject><ispartof>Biophysical journal, 2022-04, Vol.121 (8), p.1449-1464</ispartof><rights>2022 Biophysical Society</rights><rights>Copyright © 2022 Biophysical Society. All rights reserved.</rights><rights>2022 Biophysical Society. 2022 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-40e1ccd758caa2bc75d113b6671986e94ac1136c84c5a60d152f5ea27136e43e3</citedby><cites>FETCH-LOGICAL-c451t-40e1ccd758caa2bc75d113b6671986e94ac1136c84c5a60d152f5ea27136e43e3</cites><orcidid>0000-0003-0415-4851 ; 0000-0001-8467-1247 ; 0000-0001-8577-2592 ; 0000-0003-2035-1337 ; 0000-0003-0227-5895 ; 0000-0002-8372-5941 ; 0000-0001-6349-4077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9072586/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349522002259$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35300967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marinelli, Isabella</creatorcontrib><creatorcontrib>Thompson, Benjamin M.</creatorcontrib><creatorcontrib>Parekh, Vishal S.</creatorcontrib><creatorcontrib>Fletcher, Patrick A.</creatorcontrib><creatorcontrib>Gerardo-Giorda, Luca</creatorcontrib><creatorcontrib>Sherman, Arthur S.</creatorcontrib><creatorcontrib>Satin, Leslie S.</creatorcontrib><creatorcontrib>Bertram, Richard</creatorcontrib><title>Oscillations in K(ATP) conductance drive slow calcium oscillations in pancreatic β-cells</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>ATP-sensitive K+ (K(ATP)) channels were first reported in the β-cells of pancreatic islets in 1984, and it was soon established that they are the primary means by which the blood glucose level is transduced to cellular electrical activity and consequently insulin secretion. However, the role that the K(ATP) channels play in driving the bursting electrical activity of islet β-cells, which drives pulsatile insulin secretion, remains unclear. One difficulty is that bursting is abolished when several different ion channel types are blocked pharmacologically or genetically, making it challenging to distinguish causation from correlation. Here, we demonstrate a means for determining whether activity-dependent oscillations in K(ATP) conductance play the primary role in driving electrical bursting in β-cells. We use mathematical models to predict that if K(ATP) is the driver, then contrary to intuition, the mean, peak, and nadir levels of ATP/ADP should be invariant to changes in glucose within the concentration range that supports bursting. We test this in islets using Perceval-HR to image oscillations in ATP/ADP. We find that mean, peak, and nadir levels are indeed approximately invariant, supporting the hypothesis that oscillations in K(ATP) conductance are the main drivers of the slow bursting oscillations typically seen at stimulatory glucose levels in mouse islets. In conclusion, we provide, for the first time to our knowledge, causal evidence for the role of K(ATP) channels not only as the primary target for glucose regulation but also for their role in driving bursting electrical activity and pulsatile insulin secretion.</description><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling - physiology</subject><subject>Glucose - metabolism</subject><subject>Glucose - pharmacology</subject><subject>Insulin - metabolism</subject><subject>Islets of Langerhans - metabolism</subject><subject>Membrane Potentials - physiology</subject><subject>Mice</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFO3DAURa0KVKbAB3RTZQmLhGfHdhIhISFUSgUSLGDByvK8vGk9ysSDnUzFb_VD-CY8GoooC1bWs8-9tu9l7CuHggPXR_NiupwXAoQooCyAq09swpUUOUCtt9gEAHReykbtsC8xzgG4UMA_s51SlQCNribs_jqi6zo7ON_HzPXZ5cHp7c1hhr5vRxxsj5S1wa0oi53_k6Ht0I2LzL9TLRMYKM2YPf3Nkbou7rHtme0i7b-su-zu_Pvt2UV-df3j59npVY5S8SGXQByxrVSN1oopVqrlvJxqXfGm1tRIi2nWWEtUVkPLlZgpsqJKmyRLKnfZycZ3OU4X1CL1Q7CdWQa3sOHReOvM_ye9-21--ZVpoBKq1sng4MUg-IeR4mAWLq6_YHvyYzRCS2gayRUklG9QDD7GQLPXaziYdSVmblIlZl2JgdKkSpLm29v3vSr-dZCA4w1AKaWVo2BSuJSCb10gHEzr3Qf2z2oTnfQ</recordid><startdate>20220419</startdate><enddate>20220419</enddate><creator>Marinelli, Isabella</creator><creator>Thompson, Benjamin M.</creator><creator>Parekh, Vishal S.</creator><creator>Fletcher, Patrick A.</creator><creator>Gerardo-Giorda, Luca</creator><creator>Sherman, Arthur S.</creator><creator>Satin, Leslie S.</creator><creator>Bertram, Richard</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0415-4851</orcidid><orcidid>https://orcid.org/0000-0001-8467-1247</orcidid><orcidid>https://orcid.org/0000-0001-8577-2592</orcidid><orcidid>https://orcid.org/0000-0003-2035-1337</orcidid><orcidid>https://orcid.org/0000-0003-0227-5895</orcidid><orcidid>https://orcid.org/0000-0002-8372-5941</orcidid><orcidid>https://orcid.org/0000-0001-6349-4077</orcidid></search><sort><creationdate>20220419</creationdate><title>Oscillations in K(ATP) conductance drive slow calcium oscillations in pancreatic β-cells</title><author>Marinelli, Isabella ; Thompson, Benjamin M. ; Parekh, Vishal S. ; Fletcher, Patrick A. ; Gerardo-Giorda, Luca ; Sherman, Arthur S. ; Satin, Leslie S. ; Bertram, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-40e1ccd758caa2bc75d113b6671986e94ac1136c84c5a60d152f5ea27136e43e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling - physiology</topic><topic>Glucose - metabolism</topic><topic>Glucose - pharmacology</topic><topic>Insulin - metabolism</topic><topic>Islets of Langerhans - metabolism</topic><topic>Membrane Potentials - physiology</topic><topic>Mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marinelli, Isabella</creatorcontrib><creatorcontrib>Thompson, Benjamin M.</creatorcontrib><creatorcontrib>Parekh, Vishal S.</creatorcontrib><creatorcontrib>Fletcher, Patrick A.</creatorcontrib><creatorcontrib>Gerardo-Giorda, Luca</creatorcontrib><creatorcontrib>Sherman, Arthur S.</creatorcontrib><creatorcontrib>Satin, Leslie S.</creatorcontrib><creatorcontrib>Bertram, Richard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marinelli, Isabella</au><au>Thompson, Benjamin M.</au><au>Parekh, Vishal S.</au><au>Fletcher, Patrick A.</au><au>Gerardo-Giorda, Luca</au><au>Sherman, Arthur S.</au><au>Satin, Leslie S.</au><au>Bertram, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillations in K(ATP) conductance drive slow calcium oscillations in pancreatic β-cells</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2022-04-19</date><risdate>2022</risdate><volume>121</volume><issue>8</issue><spage>1449</spage><epage>1464</epage><pages>1449-1464</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>ATP-sensitive K+ (K(ATP)) channels were first reported in the β-cells of pancreatic islets in 1984, and it was soon established that they are the primary means by which the blood glucose level is transduced to cellular electrical activity and consequently insulin secretion. However, the role that the K(ATP) channels play in driving the bursting electrical activity of islet β-cells, which drives pulsatile insulin secretion, remains unclear. One difficulty is that bursting is abolished when several different ion channel types are blocked pharmacologically or genetically, making it challenging to distinguish causation from correlation. Here, we demonstrate a means for determining whether activity-dependent oscillations in K(ATP) conductance play the primary role in driving electrical bursting in β-cells. We use mathematical models to predict that if K(ATP) is the driver, then contrary to intuition, the mean, peak, and nadir levels of ATP/ADP should be invariant to changes in glucose within the concentration range that supports bursting. We test this in islets using Perceval-HR to image oscillations in ATP/ADP. We find that mean, peak, and nadir levels are indeed approximately invariant, supporting the hypothesis that oscillations in K(ATP) conductance are the main drivers of the slow bursting oscillations typically seen at stimulatory glucose levels in mouse islets. In conclusion, we provide, for the first time to our knowledge, causal evidence for the role of K(ATP) channels not only as the primary target for glucose regulation but also for their role in driving bursting electrical activity and pulsatile insulin secretion.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35300967</pmid><doi>10.1016/j.bpj.2022.03.015</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0415-4851</orcidid><orcidid>https://orcid.org/0000-0001-8467-1247</orcidid><orcidid>https://orcid.org/0000-0001-8577-2592</orcidid><orcidid>https://orcid.org/0000-0003-2035-1337</orcidid><orcidid>https://orcid.org/0000-0003-0227-5895</orcidid><orcidid>https://orcid.org/0000-0002-8372-5941</orcidid><orcidid>https://orcid.org/0000-0001-6349-4077</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2022-04, Vol.121 (8), p.1449-1464 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9072586 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adenosine Diphosphate - metabolism Adenosine Triphosphate - metabolism Animals Calcium - metabolism Calcium Signaling - physiology Glucose - metabolism Glucose - pharmacology Insulin - metabolism Islets of Langerhans - metabolism Membrane Potentials - physiology Mice |
title | Oscillations in K(ATP) conductance drive slow calcium oscillations in pancreatic β-cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A57%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillations%20in%20K(ATP)%20conductance%20drive%20slow%20calcium%20oscillations%20in%20pancreatic%20%CE%B2-cells&rft.jtitle=Biophysical%20journal&rft.au=Marinelli,%20Isabella&rft.date=2022-04-19&rft.volume=121&rft.issue=8&rft.spage=1449&rft.epage=1464&rft.pages=1449-1464&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2022.03.015&rft_dat=%3Cproquest_pubme%3E2640994150%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640994150&rft_id=info:pmid/35300967&rft_els_id=S0006349522002259&rfr_iscdi=true |