Shaping the genome via lengthwise compaction, phase separation, and lamina adhesion
The link between genomic structure and biological function is yet to be consolidated, it is, however, clear that physical manipulation of the genome, driven by the activity of a variety of proteins, is a crucial step. To understand the consequences of the physical forces underlying genome organizati...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2022-05, Vol.50 (8), p.4258-4271 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4271 |
---|---|
container_issue | 8 |
container_start_page | 4258 |
container_title | Nucleic acids research |
container_volume | 50 |
creator | Brahmachari, Sumitabha Contessoto, Vinícius G Di Pierro, Michele Onuchic, José N |
description | The link between genomic structure and biological function is yet to be consolidated, it is, however, clear that physical manipulation of the genome, driven by the activity of a variety of proteins, is a crucial step. To understand the consequences of the physical forces underlying genome organization, we build a coarse-grained polymer model of the genome, featuring three fundamentally distinct classes of interactions: lengthwise compaction, i.e., compaction of chromosomes along its contour, self-adhesion among epigenetically similar genomic segments, and adhesion of chromosome segments to the nuclear envelope or lamina. We postulate that these three types of interactions sufficiently represent the concerted action of the different proteins organizing the genome architecture and show that an interplay among these interactions can recapitulate the architectural variants observed across the tree of life. The model elucidates how an interplay of forces arising from the three classes of genomic interactions can drive drastic, yet predictable, changes in the global genome architecture, and makes testable predictions. We posit that precise control over these interactions in vivo is key to the regulation of genome architecture. |
doi_str_mv | 10.1093/nar/gkac231 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9071446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2650253772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-bc39440a910bd6445b4e7f48d7a14eb189c742f1c65440773405563183451c423</originalsourceid><addsrcrecordid>eNpVkc1LxDAQxYMouq6evEuPglYzzaQfF0EWv2DBg3oO0zTbRtu0Nt0V_3sruy56Gnjz471hHmMnwC-BZ-LKUX9VvpOOBOywCYg4CjGLo1024YLLEDimB-zQ-zfOAUHiPjsQEiMOgk_Y83NFnXVlMFQmKI1rGxOsLAW1ceVQfVpvAt02HenBtu4i6CoaFW866mmtkCuCmhrrKKCiMn4Uj9jegmpvjjdzyl7vbl9mD-H86f5xdjMPtUhhCHMtMkROGfC8iBFljiZZYFokBGhySDOdYLQAHcsRSxKBXMpYQCpQgsZITNn12rdb5o0ptHFDT7XqettQ_6Vasur_xtlKle1KZTwBxHg0ONsY9O3H0vhBNdZrU9fkTLv0Koolj6RIkp-s8zWq-9b73iy2McDVTw1qrEFtahjp07-Xbdnfv4tvTUuEdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650253772</pqid></control><display><type>article</type><title>Shaping the genome via lengthwise compaction, phase separation, and lamina adhesion</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Brahmachari, Sumitabha ; Contessoto, Vinícius G ; Di Pierro, Michele ; Onuchic, José N</creator><creatorcontrib>Brahmachari, Sumitabha ; Contessoto, Vinícius G ; Di Pierro, Michele ; Onuchic, José N</creatorcontrib><description>The link between genomic structure and biological function is yet to be consolidated, it is, however, clear that physical manipulation of the genome, driven by the activity of a variety of proteins, is a crucial step. To understand the consequences of the physical forces underlying genome organization, we build a coarse-grained polymer model of the genome, featuring three fundamentally distinct classes of interactions: lengthwise compaction, i.e., compaction of chromosomes along its contour, self-adhesion among epigenetically similar genomic segments, and adhesion of chromosome segments to the nuclear envelope or lamina. We postulate that these three types of interactions sufficiently represent the concerted action of the different proteins organizing the genome architecture and show that an interplay among these interactions can recapitulate the architectural variants observed across the tree of life. The model elucidates how an interplay of forces arising from the three classes of genomic interactions can drive drastic, yet predictable, changes in the global genome architecture, and makes testable predictions. We posit that precise control over these interactions in vivo is key to the regulation of genome architecture.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkac231</identifier><identifier>PMID: 35420130</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Chromosomes - chemistry ; Chromosomes - metabolism ; Computational Biology ; Genome ; Genomics ; Nuclear Envelope ; Nuclear Lamina - chemistry ; Nuclear Lamina - metabolism ; Nuclear Proteins - chemistry ; Nuclear Proteins - metabolism</subject><ispartof>Nucleic acids research, 2022-05, Vol.50 (8), p.4258-4271</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-bc39440a910bd6445b4e7f48d7a14eb189c742f1c65440773405563183451c423</citedby><cites>FETCH-LOGICAL-c381t-bc39440a910bd6445b4e7f48d7a14eb189c742f1c65440773405563183451c423</cites><orcidid>0000-0002-9091-6180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071446/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071446/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35420130$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brahmachari, Sumitabha</creatorcontrib><creatorcontrib>Contessoto, Vinícius G</creatorcontrib><creatorcontrib>Di Pierro, Michele</creatorcontrib><creatorcontrib>Onuchic, José N</creatorcontrib><title>Shaping the genome via lengthwise compaction, phase separation, and lamina adhesion</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The link between genomic structure and biological function is yet to be consolidated, it is, however, clear that physical manipulation of the genome, driven by the activity of a variety of proteins, is a crucial step. To understand the consequences of the physical forces underlying genome organization, we build a coarse-grained polymer model of the genome, featuring three fundamentally distinct classes of interactions: lengthwise compaction, i.e., compaction of chromosomes along its contour, self-adhesion among epigenetically similar genomic segments, and adhesion of chromosome segments to the nuclear envelope or lamina. We postulate that these three types of interactions sufficiently represent the concerted action of the different proteins organizing the genome architecture and show that an interplay among these interactions can recapitulate the architectural variants observed across the tree of life. The model elucidates how an interplay of forces arising from the three classes of genomic interactions can drive drastic, yet predictable, changes in the global genome architecture, and makes testable predictions. We posit that precise control over these interactions in vivo is key to the regulation of genome architecture.</description><subject>Chromosomes - chemistry</subject><subject>Chromosomes - metabolism</subject><subject>Computational Biology</subject><subject>Genome</subject><subject>Genomics</subject><subject>Nuclear Envelope</subject><subject>Nuclear Lamina - chemistry</subject><subject>Nuclear Lamina - metabolism</subject><subject>Nuclear Proteins - chemistry</subject><subject>Nuclear Proteins - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1LxDAQxYMouq6evEuPglYzzaQfF0EWv2DBg3oO0zTbRtu0Nt0V_3sruy56Gnjz471hHmMnwC-BZ-LKUX9VvpOOBOywCYg4CjGLo1024YLLEDimB-zQ-zfOAUHiPjsQEiMOgk_Y83NFnXVlMFQmKI1rGxOsLAW1ceVQfVpvAt02HenBtu4i6CoaFW866mmtkCuCmhrrKKCiMn4Uj9jegmpvjjdzyl7vbl9mD-H86f5xdjMPtUhhCHMtMkROGfC8iBFljiZZYFokBGhySDOdYLQAHcsRSxKBXMpYQCpQgsZITNn12rdb5o0ptHFDT7XqettQ_6Vasur_xtlKle1KZTwBxHg0ONsY9O3H0vhBNdZrU9fkTLv0Koolj6RIkp-s8zWq-9b73iy2McDVTw1qrEFtahjp07-Xbdnfv4tvTUuEdQ</recordid><startdate>20220506</startdate><enddate>20220506</enddate><creator>Brahmachari, Sumitabha</creator><creator>Contessoto, Vinícius G</creator><creator>Di Pierro, Michele</creator><creator>Onuchic, José N</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9091-6180</orcidid></search><sort><creationdate>20220506</creationdate><title>Shaping the genome via lengthwise compaction, phase separation, and lamina adhesion</title><author>Brahmachari, Sumitabha ; Contessoto, Vinícius G ; Di Pierro, Michele ; Onuchic, José N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-bc39440a910bd6445b4e7f48d7a14eb189c742f1c65440773405563183451c423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chromosomes - chemistry</topic><topic>Chromosomes - metabolism</topic><topic>Computational Biology</topic><topic>Genome</topic><topic>Genomics</topic><topic>Nuclear Envelope</topic><topic>Nuclear Lamina - chemistry</topic><topic>Nuclear Lamina - metabolism</topic><topic>Nuclear Proteins - chemistry</topic><topic>Nuclear Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brahmachari, Sumitabha</creatorcontrib><creatorcontrib>Contessoto, Vinícius G</creatorcontrib><creatorcontrib>Di Pierro, Michele</creatorcontrib><creatorcontrib>Onuchic, José N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brahmachari, Sumitabha</au><au>Contessoto, Vinícius G</au><au>Di Pierro, Michele</au><au>Onuchic, José N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shaping the genome via lengthwise compaction, phase separation, and lamina adhesion</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2022-05-06</date><risdate>2022</risdate><volume>50</volume><issue>8</issue><spage>4258</spage><epage>4271</epage><pages>4258-4271</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>The link between genomic structure and biological function is yet to be consolidated, it is, however, clear that physical manipulation of the genome, driven by the activity of a variety of proteins, is a crucial step. To understand the consequences of the physical forces underlying genome organization, we build a coarse-grained polymer model of the genome, featuring three fundamentally distinct classes of interactions: lengthwise compaction, i.e., compaction of chromosomes along its contour, self-adhesion among epigenetically similar genomic segments, and adhesion of chromosome segments to the nuclear envelope or lamina. We postulate that these three types of interactions sufficiently represent the concerted action of the different proteins organizing the genome architecture and show that an interplay among these interactions can recapitulate the architectural variants observed across the tree of life. The model elucidates how an interplay of forces arising from the three classes of genomic interactions can drive drastic, yet predictable, changes in the global genome architecture, and makes testable predictions. We posit that precise control over these interactions in vivo is key to the regulation of genome architecture.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35420130</pmid><doi>10.1093/nar/gkac231</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9091-6180</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2022-05, Vol.50 (8), p.4258-4271 |
issn | 0305-1048 1362-4962 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9071446 |
source | Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Chromosomes - chemistry Chromosomes - metabolism Computational Biology Genome Genomics Nuclear Envelope Nuclear Lamina - chemistry Nuclear Lamina - metabolism Nuclear Proteins - chemistry Nuclear Proteins - metabolism |
title | Shaping the genome via lengthwise compaction, phase separation, and lamina adhesion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shaping%20the%20genome%20via%20lengthwise%20compaction,%20phase%20separation,%20and%20lamina%20adhesion&rft.jtitle=Nucleic%20acids%20research&rft.au=Brahmachari,%20Sumitabha&rft.date=2022-05-06&rft.volume=50&rft.issue=8&rft.spage=4258&rft.epage=4271&rft.pages=4258-4271&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkac231&rft_dat=%3Cproquest_pubme%3E2650253772%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650253772&rft_id=info:pmid/35420130&rfr_iscdi=true |