Beneficial effects of potassium iodide incorporation on grain boundaries and interfaces of perovskite solar cells
Grain boundaries and interfacial impurities are the main factors that limit the further development of polycrystalline perovskite solar cells because their existence severely deteriorates the device performance. In order to optimize the efficiency of perovskite solar cells, it is essential to elimin...
Gespeichert in:
Veröffentlicht in: | RSC advances 2019-09, Vol.9 (49), p.28561-28568 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28568 |
---|---|
container_issue | 49 |
container_start_page | 28561 |
container_title | RSC advances |
container_volume | 9 |
creator | Yang, Yin Wu, Lili Hao, Xia Tang, Zeguo Lai, Huagui Zhang, Jingquan Wang, Wenwu Feng, Lianghuan |
description | Grain boundaries and interfacial impurities are the main factors that limit the further development of polycrystalline perovskite solar cells because their existence severely deteriorates the device performance. In order to optimize the efficiency of perovskite solar cells, it is essential to eliminate these defects. In the present work, potassium iodide (KI) is incorporated into the perovskite absorber. KI incorporation improves the crystallinity of the perovskite, increases the grain size, and decreases the contact potential distribution at the grain boundary, which are verified by X-ray diffraction, scanning electronic microscopy and Kelvin probe force microscopy. Besides, the activation energy of the recombination, estimated from the temperature dependent current-voltage of perovskite solar cells, is larger than the bandgap calculated from the temperature coefficient. These suggest that KI incorporation effectively passivates the grain boundaries and interfacial defects. As a result, charge trapping in the absorber as well as the bimolecular and trap-assisted recombination of the device are significantly suppressed. Consequently, the open circuit voltage and fill factor of the incorporated devices are greatly improved, enabling an optimized power conversion efficiency of 19.5%, in comparison with that of 17.3% for the control one. Our work provides an effective strategy of defect passivation in perovskite solar cells by KI incorporation and clarifies the mechanism of the performance optimization of KI incorporated devices.
The improved performance for KI incorporated perovskite solar cells are clarified from the point view of grain boundry and interface passivation. |
doi_str_mv | 10.1039/c9ra05371a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9071216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661483592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-93cf6a64a9890af31f914c9ec9666e1bdfebe5edf1b8802195305422ecfbfb4b3</originalsourceid><addsrcrecordid>eNp9kt9rFDEQxxdRbKl98V2J-CLCaSbZpJuXwnn4CwqC6HOYzU5q6l6yTXYL_vfmvHpWHwwDGfh--DLDd5rmMfBXwKV57UxGruQZ4L3mWPBWrwTX5v6d_qg5LeWK16cVCA0PmyOplDC61cfN9RuK5IMLODLyntxcWPJsSjOWEpYtC2kIA7EQXcpTyjiHFFmty4whsj4tccAcqDCMQ6Vmyh4d7U0op5vyPczEShoxM0fjWB41DzyOhU5v_5Pm67u3XzYfVhef3n_crC9WTgk-r4x0XqNu0XSGo5fgDbTOkDNaa4J-8NSTosFD33VcgFGSq1YIcr73fdvLk-Z87zst_ZYGR3HOONophy3mHzZhsH8rMXyzl-nGGn4GAnQ1eHFrkNP1QmW221B2K2CktBQrtIa2k8qIij7_B71KS451PSuEAVAdwI56uadcTqVk8odhgNtdmHZjPq9_hbmu8NO74x_Q39FV4MkeyMUd1D_XUPVn_9PtNHj5EyHYsjo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2291158112</pqid></control><display><type>article</type><title>Beneficial effects of potassium iodide incorporation on grain boundaries and interfaces of perovskite solar cells</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Yang, Yin ; Wu, Lili ; Hao, Xia ; Tang, Zeguo ; Lai, Huagui ; Zhang, Jingquan ; Wang, Wenwu ; Feng, Lianghuan</creator><creatorcontrib>Yang, Yin ; Wu, Lili ; Hao, Xia ; Tang, Zeguo ; Lai, Huagui ; Zhang, Jingquan ; Wang, Wenwu ; Feng, Lianghuan</creatorcontrib><description>Grain boundaries and interfacial impurities are the main factors that limit the further development of polycrystalline perovskite solar cells because their existence severely deteriorates the device performance. In order to optimize the efficiency of perovskite solar cells, it is essential to eliminate these defects. In the present work, potassium iodide (KI) is incorporated into the perovskite absorber. KI incorporation improves the crystallinity of the perovskite, increases the grain size, and decreases the contact potential distribution at the grain boundary, which are verified by X-ray diffraction, scanning electronic microscopy and Kelvin probe force microscopy. Besides, the activation energy of the recombination, estimated from the temperature dependent current-voltage of perovskite solar cells, is larger than the bandgap calculated from the temperature coefficient. These suggest that KI incorporation effectively passivates the grain boundaries and interfacial defects. As a result, charge trapping in the absorber as well as the bimolecular and trap-assisted recombination of the device are significantly suppressed. Consequently, the open circuit voltage and fill factor of the incorporated devices are greatly improved, enabling an optimized power conversion efficiency of 19.5%, in comparison with that of 17.3% for the control one. Our work provides an effective strategy of defect passivation in perovskite solar cells by KI incorporation and clarifies the mechanism of the performance optimization of KI incorporated devices.
The improved performance for KI incorporated perovskite solar cells are clarified from the point view of grain boundry and interface passivation.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c9ra05371a</identifier><identifier>PMID: 35529646</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Absorbers ; Chemistry ; Contact potentials ; Cooling curves ; Crystal defects ; Devices ; Energy conversion efficiency ; Grain boundaries ; Grain size distribution ; Incorporation ; Mathematical analysis ; Microscopy ; Open circuit voltage ; Optimization ; Perovskites ; Photovoltaic cells ; Potassium ; Potassium iodides ; Solar cells ; Temperature dependence</subject><ispartof>RSC advances, 2019-09, Vol.9 (49), p.28561-28568</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-93cf6a64a9890af31f914c9ec9666e1bdfebe5edf1b8802195305422ecfbfb4b3</citedby><cites>FETCH-LOGICAL-c520t-93cf6a64a9890af31f914c9ec9666e1bdfebe5edf1b8802195305422ecfbfb4b3</cites><orcidid>0000-0002-3512-9600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071216/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071216/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35529646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yin</creatorcontrib><creatorcontrib>Wu, Lili</creatorcontrib><creatorcontrib>Hao, Xia</creatorcontrib><creatorcontrib>Tang, Zeguo</creatorcontrib><creatorcontrib>Lai, Huagui</creatorcontrib><creatorcontrib>Zhang, Jingquan</creatorcontrib><creatorcontrib>Wang, Wenwu</creatorcontrib><creatorcontrib>Feng, Lianghuan</creatorcontrib><title>Beneficial effects of potassium iodide incorporation on grain boundaries and interfaces of perovskite solar cells</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Grain boundaries and interfacial impurities are the main factors that limit the further development of polycrystalline perovskite solar cells because their existence severely deteriorates the device performance. In order to optimize the efficiency of perovskite solar cells, it is essential to eliminate these defects. In the present work, potassium iodide (KI) is incorporated into the perovskite absorber. KI incorporation improves the crystallinity of the perovskite, increases the grain size, and decreases the contact potential distribution at the grain boundary, which are verified by X-ray diffraction, scanning electronic microscopy and Kelvin probe force microscopy. Besides, the activation energy of the recombination, estimated from the temperature dependent current-voltage of perovskite solar cells, is larger than the bandgap calculated from the temperature coefficient. These suggest that KI incorporation effectively passivates the grain boundaries and interfacial defects. As a result, charge trapping in the absorber as well as the bimolecular and trap-assisted recombination of the device are significantly suppressed. Consequently, the open circuit voltage and fill factor of the incorporated devices are greatly improved, enabling an optimized power conversion efficiency of 19.5%, in comparison with that of 17.3% for the control one. Our work provides an effective strategy of defect passivation in perovskite solar cells by KI incorporation and clarifies the mechanism of the performance optimization of KI incorporated devices.
The improved performance for KI incorporated perovskite solar cells are clarified from the point view of grain boundry and interface passivation.</description><subject>Absorbers</subject><subject>Chemistry</subject><subject>Contact potentials</subject><subject>Cooling curves</subject><subject>Crystal defects</subject><subject>Devices</subject><subject>Energy conversion efficiency</subject><subject>Grain boundaries</subject><subject>Grain size distribution</subject><subject>Incorporation</subject><subject>Mathematical analysis</subject><subject>Microscopy</subject><subject>Open circuit voltage</subject><subject>Optimization</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Potassium</subject><subject>Potassium iodides</subject><subject>Solar cells</subject><subject>Temperature dependence</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kt9rFDEQxxdRbKl98V2J-CLCaSbZpJuXwnn4CwqC6HOYzU5q6l6yTXYL_vfmvHpWHwwDGfh--DLDd5rmMfBXwKV57UxGruQZ4L3mWPBWrwTX5v6d_qg5LeWK16cVCA0PmyOplDC61cfN9RuK5IMLODLyntxcWPJsSjOWEpYtC2kIA7EQXcpTyjiHFFmty4whsj4tccAcqDCMQ6Vmyh4d7U0op5vyPczEShoxM0fjWB41DzyOhU5v_5Pm67u3XzYfVhef3n_crC9WTgk-r4x0XqNu0XSGo5fgDbTOkDNaa4J-8NSTosFD33VcgFGSq1YIcr73fdvLk-Z87zst_ZYGR3HOONophy3mHzZhsH8rMXyzl-nGGn4GAnQ1eHFrkNP1QmW221B2K2CktBQrtIa2k8qIij7_B71KS451PSuEAVAdwI56uadcTqVk8odhgNtdmHZjPq9_hbmu8NO74x_Q39FV4MkeyMUd1D_XUPVn_9PtNHj5EyHYsjo</recordid><startdate>20190910</startdate><enddate>20190910</enddate><creator>Yang, Yin</creator><creator>Wu, Lili</creator><creator>Hao, Xia</creator><creator>Tang, Zeguo</creator><creator>Lai, Huagui</creator><creator>Zhang, Jingquan</creator><creator>Wang, Wenwu</creator><creator>Feng, Lianghuan</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3512-9600</orcidid></search><sort><creationdate>20190910</creationdate><title>Beneficial effects of potassium iodide incorporation on grain boundaries and interfaces of perovskite solar cells</title><author>Yang, Yin ; Wu, Lili ; Hao, Xia ; Tang, Zeguo ; Lai, Huagui ; Zhang, Jingquan ; Wang, Wenwu ; Feng, Lianghuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-93cf6a64a9890af31f914c9ec9666e1bdfebe5edf1b8802195305422ecfbfb4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorbers</topic><topic>Chemistry</topic><topic>Contact potentials</topic><topic>Cooling curves</topic><topic>Crystal defects</topic><topic>Devices</topic><topic>Energy conversion efficiency</topic><topic>Grain boundaries</topic><topic>Grain size distribution</topic><topic>Incorporation</topic><topic>Mathematical analysis</topic><topic>Microscopy</topic><topic>Open circuit voltage</topic><topic>Optimization</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Potassium</topic><topic>Potassium iodides</topic><topic>Solar cells</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yin</creatorcontrib><creatorcontrib>Wu, Lili</creatorcontrib><creatorcontrib>Hao, Xia</creatorcontrib><creatorcontrib>Tang, Zeguo</creatorcontrib><creatorcontrib>Lai, Huagui</creatorcontrib><creatorcontrib>Zhang, Jingquan</creatorcontrib><creatorcontrib>Wang, Wenwu</creatorcontrib><creatorcontrib>Feng, Lianghuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yin</au><au>Wu, Lili</au><au>Hao, Xia</au><au>Tang, Zeguo</au><au>Lai, Huagui</au><au>Zhang, Jingquan</au><au>Wang, Wenwu</au><au>Feng, Lianghuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beneficial effects of potassium iodide incorporation on grain boundaries and interfaces of perovskite solar cells</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2019-09-10</date><risdate>2019</risdate><volume>9</volume><issue>49</issue><spage>28561</spage><epage>28568</epage><pages>28561-28568</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Grain boundaries and interfacial impurities are the main factors that limit the further development of polycrystalline perovskite solar cells because their existence severely deteriorates the device performance. In order to optimize the efficiency of perovskite solar cells, it is essential to eliminate these defects. In the present work, potassium iodide (KI) is incorporated into the perovskite absorber. KI incorporation improves the crystallinity of the perovskite, increases the grain size, and decreases the contact potential distribution at the grain boundary, which are verified by X-ray diffraction, scanning electronic microscopy and Kelvin probe force microscopy. Besides, the activation energy of the recombination, estimated from the temperature dependent current-voltage of perovskite solar cells, is larger than the bandgap calculated from the temperature coefficient. These suggest that KI incorporation effectively passivates the grain boundaries and interfacial defects. As a result, charge trapping in the absorber as well as the bimolecular and trap-assisted recombination of the device are significantly suppressed. Consequently, the open circuit voltage and fill factor of the incorporated devices are greatly improved, enabling an optimized power conversion efficiency of 19.5%, in comparison with that of 17.3% for the control one. Our work provides an effective strategy of defect passivation in perovskite solar cells by KI incorporation and clarifies the mechanism of the performance optimization of KI incorporated devices.
The improved performance for KI incorporated perovskite solar cells are clarified from the point view of grain boundry and interface passivation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35529646</pmid><doi>10.1039/c9ra05371a</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3512-9600</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2019-09, Vol.9 (49), p.28561-28568 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9071216 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
subjects | Absorbers Chemistry Contact potentials Cooling curves Crystal defects Devices Energy conversion efficiency Grain boundaries Grain size distribution Incorporation Mathematical analysis Microscopy Open circuit voltage Optimization Perovskites Photovoltaic cells Potassium Potassium iodides Solar cells Temperature dependence |
title | Beneficial effects of potassium iodide incorporation on grain boundaries and interfaces of perovskite solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beneficial%20effects%20of%20potassium%20iodide%20incorporation%20on%20grain%20boundaries%20and%20interfaces%20of%20perovskite%20solar%20cells&rft.jtitle=RSC%20advances&rft.au=Yang,%20Yin&rft.date=2019-09-10&rft.volume=9&rft.issue=49&rft.spage=28561&rft.epage=28568&rft.pages=28561-28568&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c9ra05371a&rft_dat=%3Cproquest_pubme%3E2661483592%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2291158112&rft_id=info:pmid/35529646&rfr_iscdi=true |