Model Affitin and PEG modifications onto siRNA lipid nanocapsules: cell uptake and in vivo biodistribution improvements

Malignant melanoma is an aggressive tumor, associated with the presence of local and/or distant metastases. The development of gene therapy by the use of small interfering RNA (siRNA) represents a promising new treatment. However, the protection of this biomolecule is necessary in order for it to be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2019-08, Vol.9 (47), p.27264-27278
Hauptverfasser: Resnier, Pauline, Lepeltier, Elise, Emina, Anthea Lucrezia, Galopin, Natacha, Bejaud, Jérôme, David, Stephanie, Ballet, Caroline, Benvegnu, Thierry, Pecorari, Frédéric, Chourpa, Igor, Benoit, Jean-Pierre, Passirani, Catherine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27278
container_issue 47
container_start_page 27264
container_title RSC advances
container_volume 9
creator Resnier, Pauline
Lepeltier, Elise
Emina, Anthea Lucrezia
Galopin, Natacha
Bejaud, Jérôme
David, Stephanie
Ballet, Caroline
Benvegnu, Thierry
Pecorari, Frédéric
Chourpa, Igor
Benoit, Jean-Pierre
Passirani, Catherine
description Malignant melanoma is an aggressive tumor, associated with the presence of local and/or distant metastases. The development of gene therapy by the use of small interfering RNA (siRNA) represents a promising new treatment. However, the protection of this biomolecule is necessary in order for it to be intravenously administrated, for example its incorporation into nanomedicines. In parallel to the passive targeting usually obtained by pegylation, various studies have aimed at developing "smart" nanomedicines to efficiently deliver the drug to tumor sites. In this work, siRNA loaded lipid nanocapsules (LNCs) were modified with DSPE-polyethylene glycol (DSPE-PEG), tetraether-PEG (TE-PEG) and/or with an Affitin model, to assay multiple targeting strategies. The uptake of fluorescently labelled LNCs, nanocarrier integrity and siRNA release into human SK-Mel28 melanoma cells were studied by flow cytometry, conventional confocal microscopy and by confocal spectral imaging in a Förster Resonance Energy Transfer (FRET) mode. Surface modified siRNA LNCs were followed after human plasma incubation and after intravenous injection, in order to compare the stealth properties. Finally, the biodistribution of the different siRNA LNCs in healthy and melanoma tumor bearing mice models was assessed by biofluorescence imaging (BFI), to evaluate the potential tumor targeting ability. The post-insertion of DSPE-PEG induced a strong decrease of the internalization into melanoma cells compared to TE-PEG modification. Both PEG polymer decorations induced a great plasma protection of siRNA but only DSPE-PEG led to stealth properties, even at low concentration (5 mM). The Affitin grafting by thiolation of DSPE-PEG was validated on siRNA LNCs. DSPE-PEG-Affitin LNCs were not detected in this melanoma tumor model but did not show unspecific accumulation in organs. DSPE-PEG and TE-PEG LNCs induced a significant intratumoral accumulation of modified LNCs.
doi_str_mv 10.1039/c9ra03668g
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9070605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283206428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-e77ac912f786c88d8340d331d84650c3b764cf52740092e30c3e2a3f6b905dcc3</originalsourceid><addsrcrecordid>eNqFkltvFCEUgInR2Gbtiz_AkPhijKtcBgZ8MJls6tZkvaTRZ8IA01JnYAozY_z3st3a1L7IyyGHj--QwwHgOUZvMaLynZFJI8q5uHgEjgmq-JogLh_f2x-Bk5yvUFmcYcLxU3BEGSOSUHwMfn2O1vWw6To_-QB1sPDb6RYO0frOGz35GDKMYYow-_MvDez96C0MOkSjxzz3Lr-HxvU9nMdJ_3Q3guJZ_BJh64slT8m3894D_TCmuLjBhSk_A0863Wd3chtX4MfH0--bs_Xu6_bTptmtDcP1tHZ1rY3EpKsFN0JYQStkKcVWVJwhQ9uaV6ZjpK4QksTRknJE0463EjFrDF2BDwfvOLeDs6bUTrpXY_KDTr9V1F79exL8pbqIi5KoRhyxInhzEFw-uHbW7JQP2aVBIUJpXfgFF_zVbb0Ur2eXJzX4vG-QDi7OWRHOcSU4l9X_UYoYFliSvfXlA_QqzimUxilCBC2_XJWwAq8PlEkx5-S6u_dipPbDojbyvLkZlm2BX9xvzB36dzToHxzUucs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283206428</pqid></control><display><type>article</type><title>Model Affitin and PEG modifications onto siRNA lipid nanocapsules: cell uptake and in vivo biodistribution improvements</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Resnier, Pauline ; Lepeltier, Elise ; Emina, Anthea Lucrezia ; Galopin, Natacha ; Bejaud, Jérôme ; David, Stephanie ; Ballet, Caroline ; Benvegnu, Thierry ; Pecorari, Frédéric ; Chourpa, Igor ; Benoit, Jean-Pierre ; Passirani, Catherine</creator><creatorcontrib>Resnier, Pauline ; Lepeltier, Elise ; Emina, Anthea Lucrezia ; Galopin, Natacha ; Bejaud, Jérôme ; David, Stephanie ; Ballet, Caroline ; Benvegnu, Thierry ; Pecorari, Frédéric ; Chourpa, Igor ; Benoit, Jean-Pierre ; Passirani, Catherine</creatorcontrib><description>Malignant melanoma is an aggressive tumor, associated with the presence of local and/or distant metastases. The development of gene therapy by the use of small interfering RNA (siRNA) represents a promising new treatment. However, the protection of this biomolecule is necessary in order for it to be intravenously administrated, for example its incorporation into nanomedicines. In parallel to the passive targeting usually obtained by pegylation, various studies have aimed at developing "smart" nanomedicines to efficiently deliver the drug to tumor sites. In this work, siRNA loaded lipid nanocapsules (LNCs) were modified with DSPE-polyethylene glycol (DSPE-PEG), tetraether-PEG (TE-PEG) and/or with an Affitin model, to assay multiple targeting strategies. The uptake of fluorescently labelled LNCs, nanocarrier integrity and siRNA release into human SK-Mel28 melanoma cells were studied by flow cytometry, conventional confocal microscopy and by confocal spectral imaging in a Förster Resonance Energy Transfer (FRET) mode. Surface modified siRNA LNCs were followed after human plasma incubation and after intravenous injection, in order to compare the stealth properties. Finally, the biodistribution of the different siRNA LNCs in healthy and melanoma tumor bearing mice models was assessed by biofluorescence imaging (BFI), to evaluate the potential tumor targeting ability. The post-insertion of DSPE-PEG induced a strong decrease of the internalization into melanoma cells compared to TE-PEG modification. Both PEG polymer decorations induced a great plasma protection of siRNA but only DSPE-PEG led to stealth properties, even at low concentration (5 mM). The Affitin grafting by thiolation of DSPE-PEG was validated on siRNA LNCs. DSPE-PEG-Affitin LNCs were not detected in this melanoma tumor model but did not show unspecific accumulation in organs. DSPE-PEG and TE-PEG LNCs induced a significant intratumoral accumulation of modified LNCs.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c9ra03668g</identifier><identifier>PMID: 35529231</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Accumulation ; animal models ; Biomolecules ; Blood plasma ; Cancer ; chemical bonding ; Chemistry ; confocal microscopy ; Drug delivery systems ; drugs ; Energy transfer ; Flow cytometry ; Gene therapy ; humans ; image analysis ; intravenous injection ; Life Sciences ; Lipids ; Melanoma ; metastasis ; nanocapsules ; nanocarriers ; nanomedicine ; Organs ; Polyethylene glycol ; polymers ; Skin cancer ; small interfering RNA ; Tumors</subject><ispartof>RSC advances, 2019-08, Vol.9 (47), p.27264-27278</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-e77ac912f786c88d8340d331d84650c3b764cf52740092e30c3e2a3f6b905dcc3</citedby><cites>FETCH-LOGICAL-c517t-e77ac912f786c88d8340d331d84650c3b764cf52740092e30c3e2a3f6b905dcc3</cites><orcidid>0000-0001-6024-7839 ; 0000-0002-7666-6453 ; 0000-0003-2116-0735 ; 0000-0002-7854-0643 ; 0000-0003-1613-9990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070605/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070605/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35529231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-02337070$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Resnier, Pauline</creatorcontrib><creatorcontrib>Lepeltier, Elise</creatorcontrib><creatorcontrib>Emina, Anthea Lucrezia</creatorcontrib><creatorcontrib>Galopin, Natacha</creatorcontrib><creatorcontrib>Bejaud, Jérôme</creatorcontrib><creatorcontrib>David, Stephanie</creatorcontrib><creatorcontrib>Ballet, Caroline</creatorcontrib><creatorcontrib>Benvegnu, Thierry</creatorcontrib><creatorcontrib>Pecorari, Frédéric</creatorcontrib><creatorcontrib>Chourpa, Igor</creatorcontrib><creatorcontrib>Benoit, Jean-Pierre</creatorcontrib><creatorcontrib>Passirani, Catherine</creatorcontrib><title>Model Affitin and PEG modifications onto siRNA lipid nanocapsules: cell uptake and in vivo biodistribution improvements</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Malignant melanoma is an aggressive tumor, associated with the presence of local and/or distant metastases. The development of gene therapy by the use of small interfering RNA (siRNA) represents a promising new treatment. However, the protection of this biomolecule is necessary in order for it to be intravenously administrated, for example its incorporation into nanomedicines. In parallel to the passive targeting usually obtained by pegylation, various studies have aimed at developing "smart" nanomedicines to efficiently deliver the drug to tumor sites. In this work, siRNA loaded lipid nanocapsules (LNCs) were modified with DSPE-polyethylene glycol (DSPE-PEG), tetraether-PEG (TE-PEG) and/or with an Affitin model, to assay multiple targeting strategies. The uptake of fluorescently labelled LNCs, nanocarrier integrity and siRNA release into human SK-Mel28 melanoma cells were studied by flow cytometry, conventional confocal microscopy and by confocal spectral imaging in a Förster Resonance Energy Transfer (FRET) mode. Surface modified siRNA LNCs were followed after human plasma incubation and after intravenous injection, in order to compare the stealth properties. Finally, the biodistribution of the different siRNA LNCs in healthy and melanoma tumor bearing mice models was assessed by biofluorescence imaging (BFI), to evaluate the potential tumor targeting ability. The post-insertion of DSPE-PEG induced a strong decrease of the internalization into melanoma cells compared to TE-PEG modification. Both PEG polymer decorations induced a great plasma protection of siRNA but only DSPE-PEG led to stealth properties, even at low concentration (5 mM). The Affitin grafting by thiolation of DSPE-PEG was validated on siRNA LNCs. DSPE-PEG-Affitin LNCs were not detected in this melanoma tumor model but did not show unspecific accumulation in organs. DSPE-PEG and TE-PEG LNCs induced a significant intratumoral accumulation of modified LNCs.</description><subject>Accumulation</subject><subject>animal models</subject><subject>Biomolecules</subject><subject>Blood plasma</subject><subject>Cancer</subject><subject>chemical bonding</subject><subject>Chemistry</subject><subject>confocal microscopy</subject><subject>Drug delivery systems</subject><subject>drugs</subject><subject>Energy transfer</subject><subject>Flow cytometry</subject><subject>Gene therapy</subject><subject>humans</subject><subject>image analysis</subject><subject>intravenous injection</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Melanoma</subject><subject>metastasis</subject><subject>nanocapsules</subject><subject>nanocarriers</subject><subject>nanomedicine</subject><subject>Organs</subject><subject>Polyethylene glycol</subject><subject>polymers</subject><subject>Skin cancer</subject><subject>small interfering RNA</subject><subject>Tumors</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkltvFCEUgInR2Gbtiz_AkPhijKtcBgZ8MJls6tZkvaTRZ8IA01JnYAozY_z3st3a1L7IyyGHj--QwwHgOUZvMaLynZFJI8q5uHgEjgmq-JogLh_f2x-Bk5yvUFmcYcLxU3BEGSOSUHwMfn2O1vWw6To_-QB1sPDb6RYO0frOGz35GDKMYYow-_MvDez96C0MOkSjxzz3Lr-HxvU9nMdJ_3Q3guJZ_BJh64slT8m3894D_TCmuLjBhSk_A0863Wd3chtX4MfH0--bs_Xu6_bTptmtDcP1tHZ1rY3EpKsFN0JYQStkKcVWVJwhQ9uaV6ZjpK4QksTRknJE0463EjFrDF2BDwfvOLeDs6bUTrpXY_KDTr9V1F79exL8pbqIi5KoRhyxInhzEFw-uHbW7JQP2aVBIUJpXfgFF_zVbb0Ur2eXJzX4vG-QDi7OWRHOcSU4l9X_UYoYFliSvfXlA_QqzimUxilCBC2_XJWwAq8PlEkx5-S6u_dipPbDojbyvLkZlm2BX9xvzB36dzToHxzUucs</recordid><startdate>20190830</startdate><enddate>20190830</enddate><creator>Resnier, Pauline</creator><creator>Lepeltier, Elise</creator><creator>Emina, Anthea Lucrezia</creator><creator>Galopin, Natacha</creator><creator>Bejaud, Jérôme</creator><creator>David, Stephanie</creator><creator>Ballet, Caroline</creator><creator>Benvegnu, Thierry</creator><creator>Pecorari, Frédéric</creator><creator>Chourpa, Igor</creator><creator>Benoit, Jean-Pierre</creator><creator>Passirani, Catherine</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6024-7839</orcidid><orcidid>https://orcid.org/0000-0002-7666-6453</orcidid><orcidid>https://orcid.org/0000-0003-2116-0735</orcidid><orcidid>https://orcid.org/0000-0002-7854-0643</orcidid><orcidid>https://orcid.org/0000-0003-1613-9990</orcidid></search><sort><creationdate>20190830</creationdate><title>Model Affitin and PEG modifications onto siRNA lipid nanocapsules: cell uptake and in vivo biodistribution improvements</title><author>Resnier, Pauline ; Lepeltier, Elise ; Emina, Anthea Lucrezia ; Galopin, Natacha ; Bejaud, Jérôme ; David, Stephanie ; Ballet, Caroline ; Benvegnu, Thierry ; Pecorari, Frédéric ; Chourpa, Igor ; Benoit, Jean-Pierre ; Passirani, Catherine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-e77ac912f786c88d8340d331d84650c3b764cf52740092e30c3e2a3f6b905dcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accumulation</topic><topic>animal models</topic><topic>Biomolecules</topic><topic>Blood plasma</topic><topic>Cancer</topic><topic>chemical bonding</topic><topic>Chemistry</topic><topic>confocal microscopy</topic><topic>Drug delivery systems</topic><topic>drugs</topic><topic>Energy transfer</topic><topic>Flow cytometry</topic><topic>Gene therapy</topic><topic>humans</topic><topic>image analysis</topic><topic>intravenous injection</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Melanoma</topic><topic>metastasis</topic><topic>nanocapsules</topic><topic>nanocarriers</topic><topic>nanomedicine</topic><topic>Organs</topic><topic>Polyethylene glycol</topic><topic>polymers</topic><topic>Skin cancer</topic><topic>small interfering RNA</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Resnier, Pauline</creatorcontrib><creatorcontrib>Lepeltier, Elise</creatorcontrib><creatorcontrib>Emina, Anthea Lucrezia</creatorcontrib><creatorcontrib>Galopin, Natacha</creatorcontrib><creatorcontrib>Bejaud, Jérôme</creatorcontrib><creatorcontrib>David, Stephanie</creatorcontrib><creatorcontrib>Ballet, Caroline</creatorcontrib><creatorcontrib>Benvegnu, Thierry</creatorcontrib><creatorcontrib>Pecorari, Frédéric</creatorcontrib><creatorcontrib>Chourpa, Igor</creatorcontrib><creatorcontrib>Benoit, Jean-Pierre</creatorcontrib><creatorcontrib>Passirani, Catherine</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Resnier, Pauline</au><au>Lepeltier, Elise</au><au>Emina, Anthea Lucrezia</au><au>Galopin, Natacha</au><au>Bejaud, Jérôme</au><au>David, Stephanie</au><au>Ballet, Caroline</au><au>Benvegnu, Thierry</au><au>Pecorari, Frédéric</au><au>Chourpa, Igor</au><au>Benoit, Jean-Pierre</au><au>Passirani, Catherine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Affitin and PEG modifications onto siRNA lipid nanocapsules: cell uptake and in vivo biodistribution improvements</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2019-08-30</date><risdate>2019</risdate><volume>9</volume><issue>47</issue><spage>27264</spage><epage>27278</epage><pages>27264-27278</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Malignant melanoma is an aggressive tumor, associated with the presence of local and/or distant metastases. The development of gene therapy by the use of small interfering RNA (siRNA) represents a promising new treatment. However, the protection of this biomolecule is necessary in order for it to be intravenously administrated, for example its incorporation into nanomedicines. In parallel to the passive targeting usually obtained by pegylation, various studies have aimed at developing "smart" nanomedicines to efficiently deliver the drug to tumor sites. In this work, siRNA loaded lipid nanocapsules (LNCs) were modified with DSPE-polyethylene glycol (DSPE-PEG), tetraether-PEG (TE-PEG) and/or with an Affitin model, to assay multiple targeting strategies. The uptake of fluorescently labelled LNCs, nanocarrier integrity and siRNA release into human SK-Mel28 melanoma cells were studied by flow cytometry, conventional confocal microscopy and by confocal spectral imaging in a Förster Resonance Energy Transfer (FRET) mode. Surface modified siRNA LNCs were followed after human plasma incubation and after intravenous injection, in order to compare the stealth properties. Finally, the biodistribution of the different siRNA LNCs in healthy and melanoma tumor bearing mice models was assessed by biofluorescence imaging (BFI), to evaluate the potential tumor targeting ability. The post-insertion of DSPE-PEG induced a strong decrease of the internalization into melanoma cells compared to TE-PEG modification. Both PEG polymer decorations induced a great plasma protection of siRNA but only DSPE-PEG led to stealth properties, even at low concentration (5 mM). The Affitin grafting by thiolation of DSPE-PEG was validated on siRNA LNCs. DSPE-PEG-Affitin LNCs were not detected in this melanoma tumor model but did not show unspecific accumulation in organs. DSPE-PEG and TE-PEG LNCs induced a significant intratumoral accumulation of modified LNCs.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35529231</pmid><doi>10.1039/c9ra03668g</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6024-7839</orcidid><orcidid>https://orcid.org/0000-0002-7666-6453</orcidid><orcidid>https://orcid.org/0000-0003-2116-0735</orcidid><orcidid>https://orcid.org/0000-0002-7854-0643</orcidid><orcidid>https://orcid.org/0000-0003-1613-9990</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2019-08, Vol.9 (47), p.27264-27278
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9070605
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Accumulation
animal models
Biomolecules
Blood plasma
Cancer
chemical bonding
Chemistry
confocal microscopy
Drug delivery systems
drugs
Energy transfer
Flow cytometry
Gene therapy
humans
image analysis
intravenous injection
Life Sciences
Lipids
Melanoma
metastasis
nanocapsules
nanocarriers
nanomedicine
Organs
Polyethylene glycol
polymers
Skin cancer
small interfering RNA
Tumors
title Model Affitin and PEG modifications onto siRNA lipid nanocapsules: cell uptake and in vivo biodistribution improvements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A26%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Affitin%20and%20PEG%20modifications%20onto%20siRNA%20lipid%20nanocapsules:%20cell%20uptake%20and%20in%20vivo%20biodistribution%20improvements&rft.jtitle=RSC%20advances&rft.au=Resnier,%20Pauline&rft.date=2019-08-30&rft.volume=9&rft.issue=47&rft.spage=27264&rft.epage=27278&rft.pages=27264-27278&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c9ra03668g&rft_dat=%3Cproquest_pubme%3E2283206428%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283206428&rft_id=info:pmid/35529231&rfr_iscdi=true