The mechanism of activation of MEK1 by B-Raf and KSR1
MEK1 interactions with B-Raf and KSR1 are key steps in Ras/Raf/MEK/ERK signaling. Despite this, vital mechanistic details of how these execute signal transduction are still enigmatic. Among these is why, despite B-Raf and KSR1 kinase domains similarity, the B-Raf/MEK1 and KSR1/MEK1 complexes have di...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular life sciences : CMLS 2022-05, Vol.79 (5), p.281-281, Article 281 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 281 |
---|---|
container_issue | 5 |
container_start_page | 281 |
container_title | Cellular and molecular life sciences : CMLS |
container_volume | 79 |
creator | Maloney, Ryan C. Zhang, Mingzhen Liu, Yonglan Jang, Hyunbum Nussinov, Ruth |
description | MEK1 interactions with B-Raf and KSR1 are key steps in Ras/Raf/MEK/ERK signaling. Despite this, vital mechanistic details of how these execute signal transduction are still enigmatic. Among these is why, despite B-Raf and KSR1 kinase domains similarity, the B-Raf/MEK1 and KSR1/MEK1 complexes have distinct contributions to MEK1 activation, and broadly, what is KSR1’s role. Our molecular dynamics simulations clarify these still unresolved ambiguities. Our results reveal that the proline-rich (P-rich) loop of MEK1 plays a decisive role in MEK1 activation loop (A-loop) phosphorylation. In the inactive B-Raf/MEK1 heterodimer, the collapsed A-loop of B-Raf interacts with the P-rich loop and A-loop of MEK1, minimizing MEK1 A-loop fluctuation and preventing it from phosphorylation. In the active B-Raf/MEK1 heterodimer, the P-rich loop moves in concert with the A-loop of B-Raf as it extends. This reduces the number of residues interacting with MEK1 A-loop, allowing increased A-loop fluctuation, and bringing Ser222 closer to ATP for phosphorylation. B-Raf αG-helix Arg662 promotes MEK1 activation by orienting Ser218 towards ATP. In KSR1/MEK1, the KSR1 αG-helix has Ala826 in place of B-Raf Arg662. This difference results in much fewer interactions between KSR1 αG-helix and MEK1 A-loop, thus a more flexible A-loop. We postulate that if KSR1 were to adopt an active configuration with an extended A-loop as seen in other protein kinases, then the MEK1 P-rich loop would extend in a similar manner, as seen in the active B-Raf/MEK1 heterodimer. This would result in highly flexible MEK1 A-loop, and KSR1 functioning as an active, B-Raf-like, kinase. |
doi_str_mv | 10.1007/s00018-022-04296-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9068654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2659396876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-764a1a91ec5c540f91f4758090432200b60579564148e7a0ffcac91a5408216a3</originalsourceid><addsrcrecordid>eNp9kUtPAjEUhRujEUT_gAsziRs3o7edPjcmSvARMCaIibumlA4MYWZwOpDw7y2C-Fi4ur053z23NwehUwyXGEBceQDAMgZCYqBE8Rj2UBNTArECgfe3by7JWwMdeT8NNJOEH6JGwhhIJmgTscHERbmzE1NkPo_KNDK2zpamzspi3T11ujgarqLbuG-CVoyi7ksfH6OD1My8O9nWFnq96wzaD3Hv-f6xfdOLLRW0jgWnBhuFnWWWUUgVTqlgEhTQhBCAIQcmFOMUU-mEgTS1xipsAisJ5iZpoeuN73wxzN3IuqKuzEzPqyw31UqXJtO_lSKb6HG51Aq45IwGg4utQVW-L5yvdZ5562YzU7hy4TXhHDAkkrCAnv9Bp-WiKsJ5gWIqUVwKHiiyoWxVel-5dPcZDHqdit6kokMq-jMVDWHo7OcZu5GvGAKQbAAfpGLsqu_d_9h-AHLlk7I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659396876</pqid></control><display><type>article</type><title>The mechanism of activation of MEK1 by B-Raf and KSR1</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>PubMed Central</source><creator>Maloney, Ryan C. ; Zhang, Mingzhen ; Liu, Yonglan ; Jang, Hyunbum ; Nussinov, Ruth</creator><creatorcontrib>Maloney, Ryan C. ; Zhang, Mingzhen ; Liu, Yonglan ; Jang, Hyunbum ; Nussinov, Ruth</creatorcontrib><description>MEK1 interactions with B-Raf and KSR1 are key steps in Ras/Raf/MEK/ERK signaling. Despite this, vital mechanistic details of how these execute signal transduction are still enigmatic. Among these is why, despite B-Raf and KSR1 kinase domains similarity, the B-Raf/MEK1 and KSR1/MEK1 complexes have distinct contributions to MEK1 activation, and broadly, what is KSR1’s role. Our molecular dynamics simulations clarify these still unresolved ambiguities. Our results reveal that the proline-rich (P-rich) loop of MEK1 plays a decisive role in MEK1 activation loop (A-loop) phosphorylation. In the inactive B-Raf/MEK1 heterodimer, the collapsed A-loop of B-Raf interacts with the P-rich loop and A-loop of MEK1, minimizing MEK1 A-loop fluctuation and preventing it from phosphorylation. In the active B-Raf/MEK1 heterodimer, the P-rich loop moves in concert with the A-loop of B-Raf as it extends. This reduces the number of residues interacting with MEK1 A-loop, allowing increased A-loop fluctuation, and bringing Ser222 closer to ATP for phosphorylation. B-Raf αG-helix Arg662 promotes MEK1 activation by orienting Ser218 towards ATP. In KSR1/MEK1, the KSR1 αG-helix has Ala826 in place of B-Raf Arg662. This difference results in much fewer interactions between KSR1 αG-helix and MEK1 A-loop, thus a more flexible A-loop. We postulate that if KSR1 were to adopt an active configuration with an extended A-loop as seen in other protein kinases, then the MEK1 P-rich loop would extend in a similar manner, as seen in the active B-Raf/MEK1 heterodimer. This would result in highly flexible MEK1 A-loop, and KSR1 functioning as an active, B-Raf-like, kinase.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-022-04296-0</identifier><identifier>PMID: 35508574</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adenosine Triphosphate - metabolism ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Extracellular signal-regulated kinase ; Kinases ; Life Sciences ; MAP Kinase Kinase 1 - chemistry ; MAP Kinase Kinase 1 - metabolism ; Molecular dynamics ; Original ; Original Article ; Phosphorylation ; Protein kinase ; Protein Kinases - metabolism ; Proto-Oncogene Proteins B-raf - genetics ; Proto-Oncogene Proteins B-raf - metabolism ; Proto-Oncogene Proteins c-raf - metabolism ; Raf protein ; Signal Transduction</subject><ispartof>Cellular and molecular life sciences : CMLS, 2022-05, Vol.79 (5), p.281-281, Article 281</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-764a1a91ec5c540f91f4758090432200b60579564148e7a0ffcac91a5408216a3</citedby><cites>FETCH-LOGICAL-c474t-764a1a91ec5c540f91f4758090432200b60579564148e7a0ffcac91a5408216a3</cites><orcidid>0000-0002-8115-6415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068654/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068654/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,41471,42540,51302,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35508574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maloney, Ryan C.</creatorcontrib><creatorcontrib>Zhang, Mingzhen</creatorcontrib><creatorcontrib>Liu, Yonglan</creatorcontrib><creatorcontrib>Jang, Hyunbum</creatorcontrib><creatorcontrib>Nussinov, Ruth</creatorcontrib><title>The mechanism of activation of MEK1 by B-Raf and KSR1</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>MEK1 interactions with B-Raf and KSR1 are key steps in Ras/Raf/MEK/ERK signaling. Despite this, vital mechanistic details of how these execute signal transduction are still enigmatic. Among these is why, despite B-Raf and KSR1 kinase domains similarity, the B-Raf/MEK1 and KSR1/MEK1 complexes have distinct contributions to MEK1 activation, and broadly, what is KSR1’s role. Our molecular dynamics simulations clarify these still unresolved ambiguities. Our results reveal that the proline-rich (P-rich) loop of MEK1 plays a decisive role in MEK1 activation loop (A-loop) phosphorylation. In the inactive B-Raf/MEK1 heterodimer, the collapsed A-loop of B-Raf interacts with the P-rich loop and A-loop of MEK1, minimizing MEK1 A-loop fluctuation and preventing it from phosphorylation. In the active B-Raf/MEK1 heterodimer, the P-rich loop moves in concert with the A-loop of B-Raf as it extends. This reduces the number of residues interacting with MEK1 A-loop, allowing increased A-loop fluctuation, and bringing Ser222 closer to ATP for phosphorylation. B-Raf αG-helix Arg662 promotes MEK1 activation by orienting Ser218 towards ATP. In KSR1/MEK1, the KSR1 αG-helix has Ala826 in place of B-Raf Arg662. This difference results in much fewer interactions between KSR1 αG-helix and MEK1 A-loop, thus a more flexible A-loop. We postulate that if KSR1 were to adopt an active configuration with an extended A-loop as seen in other protein kinases, then the MEK1 P-rich loop would extend in a similar manner, as seen in the active B-Raf/MEK1 heterodimer. This would result in highly flexible MEK1 A-loop, and KSR1 functioning as an active, B-Raf-like, kinase.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Extracellular signal-regulated kinase</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>MAP Kinase Kinase 1 - chemistry</subject><subject>MAP Kinase Kinase 1 - metabolism</subject><subject>Molecular dynamics</subject><subject>Original</subject><subject>Original Article</subject><subject>Phosphorylation</subject><subject>Protein kinase</subject><subject>Protein Kinases - metabolism</subject><subject>Proto-Oncogene Proteins B-raf - genetics</subject><subject>Proto-Oncogene Proteins B-raf - metabolism</subject><subject>Proto-Oncogene Proteins c-raf - metabolism</subject><subject>Raf protein</subject><subject>Signal Transduction</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtPAjEUhRujEUT_gAsziRs3o7edPjcmSvARMCaIibumlA4MYWZwOpDw7y2C-Fi4ur053z23NwehUwyXGEBceQDAMgZCYqBE8Rj2UBNTArECgfe3by7JWwMdeT8NNJOEH6JGwhhIJmgTscHERbmzE1NkPo_KNDK2zpamzspi3T11ujgarqLbuG-CVoyi7ksfH6OD1My8O9nWFnq96wzaD3Hv-f6xfdOLLRW0jgWnBhuFnWWWUUgVTqlgEhTQhBCAIQcmFOMUU-mEgTS1xipsAisJ5iZpoeuN73wxzN3IuqKuzEzPqyw31UqXJtO_lSKb6HG51Aq45IwGg4utQVW-L5yvdZ5562YzU7hy4TXhHDAkkrCAnv9Bp-WiKsJ5gWIqUVwKHiiyoWxVel-5dPcZDHqdit6kokMq-jMVDWHo7OcZu5GvGAKQbAAfpGLsqu_d_9h-AHLlk7I</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Maloney, Ryan C.</creator><creator>Zhang, Mingzhen</creator><creator>Liu, Yonglan</creator><creator>Jang, Hyunbum</creator><creator>Nussinov, Ruth</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8115-6415</orcidid></search><sort><creationdate>20220501</creationdate><title>The mechanism of activation of MEK1 by B-Raf and KSR1</title><author>Maloney, Ryan C. ; Zhang, Mingzhen ; Liu, Yonglan ; Jang, Hyunbum ; Nussinov, Ruth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-764a1a91ec5c540f91f4758090432200b60579564148e7a0ffcac91a5408216a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Extracellular signal-regulated kinase</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>MAP Kinase Kinase 1 - chemistry</topic><topic>MAP Kinase Kinase 1 - metabolism</topic><topic>Molecular dynamics</topic><topic>Original</topic><topic>Original Article</topic><topic>Phosphorylation</topic><topic>Protein kinase</topic><topic>Protein Kinases - metabolism</topic><topic>Proto-Oncogene Proteins B-raf - genetics</topic><topic>Proto-Oncogene Proteins B-raf - metabolism</topic><topic>Proto-Oncogene Proteins c-raf - metabolism</topic><topic>Raf protein</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maloney, Ryan C.</creatorcontrib><creatorcontrib>Zhang, Mingzhen</creatorcontrib><creatorcontrib>Liu, Yonglan</creatorcontrib><creatorcontrib>Jang, Hyunbum</creatorcontrib><creatorcontrib>Nussinov, Ruth</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maloney, Ryan C.</au><au>Zhang, Mingzhen</au><au>Liu, Yonglan</au><au>Jang, Hyunbum</au><au>Nussinov, Ruth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mechanism of activation of MEK1 by B-Raf and KSR1</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>79</volume><issue>5</issue><spage>281</spage><epage>281</epage><pages>281-281</pages><artnum>281</artnum><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>MEK1 interactions with B-Raf and KSR1 are key steps in Ras/Raf/MEK/ERK signaling. Despite this, vital mechanistic details of how these execute signal transduction are still enigmatic. Among these is why, despite B-Raf and KSR1 kinase domains similarity, the B-Raf/MEK1 and KSR1/MEK1 complexes have distinct contributions to MEK1 activation, and broadly, what is KSR1’s role. Our molecular dynamics simulations clarify these still unresolved ambiguities. Our results reveal that the proline-rich (P-rich) loop of MEK1 plays a decisive role in MEK1 activation loop (A-loop) phosphorylation. In the inactive B-Raf/MEK1 heterodimer, the collapsed A-loop of B-Raf interacts with the P-rich loop and A-loop of MEK1, minimizing MEK1 A-loop fluctuation and preventing it from phosphorylation. In the active B-Raf/MEK1 heterodimer, the P-rich loop moves in concert with the A-loop of B-Raf as it extends. This reduces the number of residues interacting with MEK1 A-loop, allowing increased A-loop fluctuation, and bringing Ser222 closer to ATP for phosphorylation. B-Raf αG-helix Arg662 promotes MEK1 activation by orienting Ser218 towards ATP. In KSR1/MEK1, the KSR1 αG-helix has Ala826 in place of B-Raf Arg662. This difference results in much fewer interactions between KSR1 αG-helix and MEK1 A-loop, thus a more flexible A-loop. We postulate that if KSR1 were to adopt an active configuration with an extended A-loop as seen in other protein kinases, then the MEK1 P-rich loop would extend in a similar manner, as seen in the active B-Raf/MEK1 heterodimer. This would result in highly flexible MEK1 A-loop, and KSR1 functioning as an active, B-Raf-like, kinase.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>35508574</pmid><doi>10.1007/s00018-022-04296-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8115-6415</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-682X |
ispartof | Cellular and molecular life sciences : CMLS, 2022-05, Vol.79 (5), p.281-281, Article 281 |
issn | 1420-682X 1420-9071 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9068654 |
source | MEDLINE; Springer Nature - Complete Springer Journals; PubMed Central |
subjects | Adenosine Triphosphate - metabolism Biochemistry Biomedical and Life Sciences Biomedicine Cell Biology Extracellular signal-regulated kinase Kinases Life Sciences MAP Kinase Kinase 1 - chemistry MAP Kinase Kinase 1 - metabolism Molecular dynamics Original Original Article Phosphorylation Protein kinase Protein Kinases - metabolism Proto-Oncogene Proteins B-raf - genetics Proto-Oncogene Proteins B-raf - metabolism Proto-Oncogene Proteins c-raf - metabolism Raf protein Signal Transduction |
title | The mechanism of activation of MEK1 by B-Raf and KSR1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mechanism%20of%20activation%20of%20MEK1%20by%20B-Raf%20and%20KSR1&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Maloney,%20Ryan%20C.&rft.date=2022-05-01&rft.volume=79&rft.issue=5&rft.spage=281&rft.epage=281&rft.pages=281-281&rft.artnum=281&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-022-04296-0&rft_dat=%3Cproquest_pubme%3E2659396876%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659396876&rft_id=info:pmid/35508574&rfr_iscdi=true |